×

zbMATH — the first resource for mathematics

Layering in the Ising model. (English) Zbl 1202.82015
Summary: We consider the three-dimensional Ising model in a half-space with a boundary field (no bulk field). We compute the low-temperature expansion of layering transition lines.

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abraham, D.B.: Solvable model with a roughening transition for a planar Ising ferromagnet. Phys. Rev. Lett. 44, 1165–1168 (1980) · doi:10.1103/PhysRevLett.44.1165
[2] Alexander, K.S., Dunlop, F., Miracle-Solé, S.: Layering and wetting transitions for an SOS interface. arXiv:0908.0321v1 [math-ph] · Zbl 1209.82011
[3] Basuev, A.G.: Ising model in half-space: a series of phase transitions in low magnetic fields. Theor. Math. Phys. 153, 1539–1574 (2007) · Zbl 1139.82309 · doi:10.1007/s11232-007-0132-y
[4] Binder, K., Landau, D.P.: Wetting versus layering near the roughening transition in the 3d Ising model. Phys. Rev. B 46, 4844 (1992) · doi:10.1103/PhysRevB.46.4844
[5] Cahn, J.W.: Critical point wetting. J. Chem. Phys. 66, 3667 (1977) · doi:10.1063/1.434402
[6] Chalker, J.T.: The pinning of an interface by a planar defect. J. Phys. A, Math. Gen. 15, L481–L485 (1982) · doi:10.1088/0305-4470/15/9/009
[7] Dobrushin, R.L.: Gibbs states describing a coexistence of phases for the three-dimensional Ising model. Theory Probab. Appl. 17, 582–600 (1972); reprinted in: Math. Problems of Statistical Mechanics, World Scientific, Singapore (1991) · Zbl 0275.60119 · doi:10.1137/1117073
[8] Fröhlich, J., Pfister, C.E.: Semi-infinite Ising model: II. The wetting and layering transitions. Commun. Math. Phys. 112, 51–74 (1987) · Zbl 1108.82302 · doi:10.1007/BF01217679
[9] Gallavotti, G., Martin-Lof, A., Miracle-Sole, S.: Some problems connected with the description of coexisting phases at low temperatures in Ising models. In: Lenard, A. (ed.) Mathematical Methods in Statistical Mechanics, pp. 162–202. Springer, Berlin (1973)
[10] Kotecký, R., Preiss, D.: Cluster expansion for abstract polymer systems. Commun. Math. Phys. 103, 491–498 (1986) · Zbl 0593.05006 · doi:10.1007/BF01211762
[11] Miracle-Solé, S.: On the convergence of cluster expansions. Physica A 279, 244–249 (2000) · doi:10.1016/S0378-4371(99)00539-7
[12] Pandit, R., Schick, M., Wortis, M.: Systematics of multilayer phenomena on attractive substrates. Phys. Rev. B 26, 5112–5140 (1982) · doi:10.1103/PhysRevB.26.5112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.