×

Modelling aggregation-fragmentation phenomena from kinetic to macroscopic scales. (English) Zbl 1202.82065

Summary: This paper deals with the modelling of aggregation and/or fragmentation physical phenomena for large systems of interacting living entities in the framework of the mathematical kinetic theory for active particles. After introducing various mathematical structures in terms of systems of nonlinear integro-differential equations with quadratic type nonlinearities and variable number of equations, the relative qualitative analysis of the initial value problem is presented. Finally, the paper deals with the derivation of macroscopic equations based on the underlying description at the microscopic scale delivered by the kinetic theory models.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
45K05 Integro-partial differential equations
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bellomo, N.; Bianca, C.; Delitala, M., Complexity analysis and mathematical tools towards the modelling of living systems, Phys. Life Rev., 6, 144-175 (2009)
[2] Bellomo, N.; Forni, G., Complex multicellular systems and immune competition: new paradigms looking for a mathematical theory, Curr. Topics Develop. Biol., 81, 485-502 (2008)
[3] Ajmone Marsan, G.; Bellomo, N.; Egidi, M., Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1, 249-278 (2008) · Zbl 1141.82357
[4] Ajmone Marsan, G., New paradigms towards the modelling of complex systems in behavioral economics, Math. Comput. Modelling, 50, 584-597 (2009) · Zbl 1185.91142
[5] Camerer, C. F.; Loewenstein, G.; Rabin, M., Advances in Behavioral Economics (2003), Princeton University Press
[6] Bianca, C., On the modelling of space dynamics in the kinetic theory for active particles, Math. Comput. Modelling, 51, 72-83 (2010) · Zbl 1190.82032
[7] Smoluchowski, M., Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen, Z. Phys. Chem., 92, 129-168 (1917)
[8] Smoluchowski, M., Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen, Physik. Zeitschr., 17, 557-599 (1916)
[9] Drake, R. L., A general mathematical survey of the coagulation equation, (Hidy, G. M.; Brock, J. R., Topics in Current Aerosol Research, 3 Part 2 (1972), Pergamon Press: Pergamon Press Oxford), 201-376
[10] Becker, R.; Döring, W., Kinetische behandlung der keimbildung in übersättigten dämpfen, Ann. Phys., 24, 719-752 (1935) · Zbl 0013.14002
[11] Oort, J. H.; van the Hulst, H. C., Gas and smoke in interstellar space, Bull. Astron. Inst. Netherland, 10, 187-210 (1946)
[12] Lachowicz, M.; Laurençot, P.; Wrzosek, D., On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchowski equation, SIAM J. Math. Anal., 34, 1399-1421 (2003) · Zbl 1047.45006
[13] Aldous, D. J., Deterministic and stochastic models for coalescence (aggregation, coagulation): review of the mean-field theory for probabilists, Bernouilli, 5, 3-48 (1999) · Zbl 0930.60096
[14] Wattis, J. A.D., An introduction to mathematical models of coagulation-fragmentation processes: a discrete deterministic mean-field approach, Physica D, 222, 1-20 (2006) · Zbl 1113.35145
[15] Escobedo, M.; Mischler, S.; Perthame, B., Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231, 157-188 (2002) · Zbl 1016.82027
[16] Ball, J. M.; Carr, J., The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation, J. Stat. Phys., 61, 203-234 (1990) · Zbl 1217.82050
[17] Collet, J.; Popoud, F., Existence of solutions to coagulation-fragmentation systems with diffusion, Transport Theory Statist. Phys, 25, 503-513 (1996) · Zbl 0870.35117
[18] da Costa, F. P., Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192, 892-914 (1995) · Zbl 0839.34015
[19] Laurencot, P.; Wrzosek, D., The Becker-Döring model with diffusion. I. basic properties of solutions, Colloq. Math., 75, 245-269 (1998) · Zbl 0894.35055
[20] Slemrod, M., Coagulation-diffusion systems: derivation and existence of solutions for the diffuse-interface structure equations, Physica D, 46, 351-366 (1990) · Zbl 0732.35103
[21] Stewart, I. W., A global existence theorem for the general coagulation fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11, 627-648 (1989) · Zbl 0683.45006
[22] Stewart, I. W.; Dubovskii, P. B., Approach to equilibrium for the coagulation fragmentation equation via a Lyapunov functional, Math. Methods Appl. Sci., 19, 171-185 (1996) · Zbl 0840.45010
[23] White, W. H., Global existence theorem for Smoluchowski’s coagulation equation, Proc. Amer. Math. Soc., 80, 273-276 (1980) · Zbl 0442.34003
[24] Wrzosek, D., Existence of solutions for the discrete coagulation-fragmentation model with diffusion, Topol. Methods Nonlinear Anal., 9, 279-296 (1997) · Zbl 0892.35077
[25] McLaughlin, D. J.; Lamb, W.; McBride, A. C., An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28, 1173-1190 (1997) · Zbl 0892.47043
[26] McLaughlin, D. J.; Lamb, W.; McBride, A. C., A semigroup approach to fragmentation models, SIAM J. Math. Anal., 28, 1158-1172 (1997) · Zbl 0892.47044
[27] Lachowicz, M.; Wrzosek, D., A nonlocal coagulation-fragmentation model, Dedicated to the memory of Wieslaw Szlenk, Appl. Math. (Warsaw), 27, 45-66 (2000) · Zbl 0994.35054
[28] Lasheras, J. C.; Eastwood, C.; Martínez-Bazán, C.; Montañés, J. L., A review of statistical models for the break-up of an immiscibile fluid immersed into a fully developed turbulent flow, Int. J. Multiph. Flow, 28, 242-278 (2002) · Zbl 1136.76556
[29] Fasano, A.; Rosso, F.; Mancini, A., Implementation of a fragmentation-coagulation-scattering model for the dynamics of stirred liquid-liquid dispersions, Physica D, 222, 141-158 (2006) · Zbl 1103.82014
[30] Tabata, M.; Eshima, N.; Takagi, I.; Hiroyama, T., The Cauchy problem for the system of equations describing migration motivated by regional economic disparity, Appl. Math. Comput., 94, 45-64 (1998) · Zbl 0939.91118
[31] Othmer, H. G.; Stevens, A., Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks, SIAM J. Appl. Math., 57, 1044-1081 (1997) · Zbl 0990.35128
[32] Zhao, Z.; Kirou, A.; Ruszczycki, B.; Johnson, N. F., Dynamical clustering as a generator of complex system dynamics, Math. Models Methods Appl. Sci., 19, Suppl., 1539-1565 (2009) · Zbl 1186.37110
[33] Short, M. B.; D’orsogna, M. R.; Pasour, V. B.; Tita, G. E.; Brantingham, P. J.; Bertozzi, A. L.; Chayes, L. B., A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, Suppl., 1249-1267 (2008) · Zbl 1180.35530
[34] Bertotti, M. L.; Delitala, M., Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. RWA, 9, 183-196 (2008) · Zbl 1132.91600
[35] Bertotti, M. L.; Delitala, M., On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders, Math. Models Methods Appl. Sci., 18, 913-934 (2008) · Zbl 1151.91734
[36] Bellomo, N.; Delitala, M., From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Phys. Life Rev., 5, 183-206 (2008)
[37] Szymamska, Z.; Rodrigo, C. M.; Lachowicz, M.; Chaplain, M. A.J., Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19, 257-283 (2009) · Zbl 1171.35066
[38] Bürger, R.; Garcia, A.; Kunik, M., A generalized kinetic model of sedimentation of polydisperse suspensions with a continuous particle distribution, Math. Models Methods Appl. Sci., 18, 1741-1786 (2008) · Zbl 1156.82394
[39] Jäger, E.; Segel, Lee A., On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52, 1442-1468 (1992) · Zbl 0759.92011
[40] Arlotti, L.; Bellomo, N., Solution of a new class of nonlinear kinetic models of population dynamics, Appl. Math. Lett., 9, 65-70 (1996) · Zbl 0853.35050
[41] Longo, E.; Bellomo, N., The Boltzmann equation for dissipative mixtures, Appl. Math. Lett., 12, 39-44 (1999) · Zbl 0937.82044
[42] Arlotti, L.; Bellomo, N.; Latrach, K., From the Jäger and Segel model to kinetic population dynamics — nonlinear evolution problems and applications, Math. Comput. Modelling, 30, 15-40 (1999) · Zbl 1043.92518
[43] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Multicellular growing systems: hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17, 1675-1693 (2007) · Zbl 1135.92009
[45] Bellomo, N.; Bellouquid, A.; Soler, J., From the mathematical kinetic theory for active particles on the derivation of hyperbolic macroscopic tissue models, Math. Comput. Modelling, 49, 2083-2093 (2009) · Zbl 1171.92309
[46] Chalub, F. A.; Dolak-Struss, Y.; Markowich, P.; Oeltz, D.; Schmeiser, C.; Soref, A., Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci., 16, 1173-1198 (2006) · Zbl 1094.92009
[47] Arlotti, L.; Bellomo, N.; De Angelis, E., Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Models Methods Appl. Sci., 12, 567-591 (2002) · Zbl 1174.82325
[48] Jabin, P.-E.; Lemesle, V.; Aurelle, D., A continuous size-structured red coral growth model, Math. Models Methods Appl. Sci., 18, 1927-1944 (2009) · Zbl 1153.92033
[49] De Lillo, S.; Delitala, M.; Salvatori, C., Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19, 1405-1426 (2009) · Zbl 1175.92035
[50] Gallo, I.; Barra, A.; Contucci, P., Parameter evaluation of a simple mean field mode of social interaction, Math. Models Methods Appl. Sci., 19, 1427-1440 (2009) · Zbl 1175.00049
[52] Alesina, A.; Spolaore, E., Conflict, defense spending and the number of nations, Eur. Econom. Rev., 50, 91-120 (2006)
[53] Aleskerov, F.; Kalyagin, V.; Pogorelskiy, K., Actual voting power of the IMF members based on their political-economic integration, Math. Comput. Modelling, 48, 1554-1569 (2008) · Zbl 1187.91046
[54] Ansolabehere, S.; Leblanc, W., A spatial model of the relationship between seats and votes, Math. Comput. Modelling, 48, 1409-1420 (2008) · Zbl 1187.91175
[55] Herrero, M. A.; Kön, A.; Perez-Pomares, J. M., Modelling vascular morphogenesis: current views in blood vessels development, Math. Models Methods Appl. Sci., 19, Suppl., 1483-1538 (2009) · Zbl 1180.35286
[56] Bellomo, N.; Li, N. K.; Maini, P. K., On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18, 593-646 (2008) · Zbl 1151.92014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.