zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A simple sufficient descent method for unconstrained optimization. (English) Zbl 1202.90246
Summary: We develop a sufficient descent method for solving large-scale unconstrained optimization problems. At each iteration, the search direction is a linear combination of the gradient at the current and the previous steps. An attractive property of this method is that the generated directions are always descent. Under some appropriate conditions, we show that the proposed method converges globally. Numerical experiments on some unconstrained minimization problems from CUTEr library are reported, which illustrate that the proposed method is promising.
MSC:
90C30Nonlinear programming
Software:
CUTEr; CUTE; CG_DESCENT
WorldCat.org
Full Text: DOI EuDML
References:
[1] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New York, NY, USA, 1999. · Zbl 0930.65067 · doi:10.1007/b98874
[2] M. Raydan, “The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem,” SIAM Journal on Optimization, vol. 7, no. 1, pp. 26-33, 1997. · Zbl 0898.90119 · doi:10.1137/S1052623494266365
[3] Y. Xiao, Z. Wei, and Z. Wang, “A limited memory BFGS-type method for large-scale unconstrained optimization,” Computers & Mathematics with Applications, vol. 56, no. 4, pp. 1001-1009, 2008. · Zbl 1155.90441 · doi:10.1016/j.camwa.2008.01.028
[4] Y. Yuan, “Subspace techniques for nonlinear optimization,” in Some Topics in Industrial and Applied Mathematics, R. Jeltsch, D. Q. Li, and I. H. Sloan, Eds., vol. 8 of Series in Contemporary Applied Mathematics, pp. 206-218, Higher Education Press, Beijing, China, 2007. · Zbl 1180.90324 · doi:10.1142/9789812709356_0012
[5] X.-M. An, D.-H. Li, and Y. Xiao, “Sufficient descent directions in unconstrained optimization,” Computational Optimization and Applications. In press. · Zbl 1242.90223 · doi:10.1007/s10589-009-9268-z
[6] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1, pp. 141-148, 1988. · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[7] J. Zhang, Y. Xiao, and Z. Wei, “Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization,” Mathematical Problems in Engineering, vol. 2009, Article ID 243290, 16 pages, 2009. · Zbl 1184.65066 · doi:10.1155/2009/243290 · eudml:45812
[8] W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 170-192, 2005. · Zbl 1093.90085 · doi:10.1137/030601880
[9] L. Zhang, W. Zhou, and D.-H. Li, “A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence,” IMA Journal of Numerical Analysis, vol. 26, no. 4, pp. 629-640, 2006. · Zbl 1106.65056 · doi:10.1093/imanum/drl016
[10] L. Zhang, W. Zhou, and D. Li, “Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search,” Numerische Mathematik, vol. 104, no. 4, pp. 561-572, 2006. · Zbl 1103.65074 · doi:10.1007/s00211-006-0028-z
[11] W. Cheng, “A two-term PRP-based descent method,” Numerical Functional Analysis and Optimization, vol. 28, no. 11-12, pp. 1217-1230, 2007. · Zbl 1138.90028 · doi:10.1080/01630560701749524
[12] L. Grippo and S. Lucidi, “A globally convergent version of the Polak-Ribière conjugate gradient method,” Mathematical Programming, vol. 78, no. 3, pp. 375-391, 1997. · Zbl 0887.90157 · doi:10.1007/BF02614362
[13] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE: constrained and unconstrained testing environment,” ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 123-160, 1995. · Zbl 0886.65058 · doi:10.1145/200979.201043 · http://www.acm.org/pubs/contents/journals/toms/1995-21/
[14] W. W. Hager and H. Zhang, “Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent,” ACM Transactions on Mathematical Software, vol. 32, no. 1, pp. 113-137, 2006. · doi:10.1145/1132973.1132979
[15] L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line search technique for Newton’s method,” SIAM Journal on Numerical Analysis, vol. 23, no. 4, pp. 707-716, 1986. · Zbl 0616.65067 · doi:10.1137/0723046
[16] H. Zhang and W. W. Hager, “A nonmonotone line search technique and its application to unconstrained optimization,” SIAM Journal on Optimization, vol. 14, no. 4, pp. 1043-1056, 2004. · Zbl 1073.90024 · doi:10.1137/S1052623403428208