×

On the number of allelic types for samples taken from exchangeable coalescents with mutation. (English) Zbl 1202.92061

Authors’ summary: Let \(K_n\) denote the number of types of a sample of size \(n\) taken from an exchangeable coalescent process (\(\Xi \)-coalescent) with mutation. A distributional recursion for the sequence \((K_n)_{n\in \mathbb N}\) is derived. If the coalescent does not have proper frequencies, i.e., if the characterizing measure \(\Xi \) on the infinite simplex \(\Delta \) does not have mass at 0 and satisfies \(\int _{\Delta } |x| \Xi (\text d x)/(x,x)<\infty \), where \(| x| :=\sum _{i=1}^{\infty } x_i\) and \((x,x):=\sum _{i=1}^{\infty } x_i^{2}\) for \(x=(x_1,x_2,\dots )\in\Delta \), then \(K_n/n\) converges weakly as \(n\rightarrow \infty \) to a limiting variable \(K\) that is characterized by an exponential integral of the subordinator associated with the coalescent process. For so-called simple measures \(\Xi \) satisfying \(\int _{\Delta }\Xi (\text d x)/(x,x)<\infty \), we characterize the distribution of \(K\) via a fixed-point equation.

MSC:

92D15 Problems related to evolution
60C05 Combinatorial probability
60F05 Central limit and other weak theorems
05C05 Trees
05C90 Applications of graph theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Basdevant, A.-L. and Goldschmidt, C. (2008). Asymptotics of the allele frequency spectrum associated with the Bolthausen–Sznitman coalescent. Electron. J. Prob. 13 , 486–512. · Zbl 1190.60006
[2] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2007). Beta-coalescents and continuous stable random trees. Ann. Prob. 35 , 1835–1887. · Zbl 1129.60067 · doi:10.1214/009117906000001114
[3] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. H. Poincaré Prob. Statist. 44 , 214–238. · Zbl 1214.60034 · doi:10.1214/07-AIHP103
[4] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126 , 261–288. · Zbl 1023.92018 · doi:10.1007/s00440-003-0264-4
[5] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197 , 247–276. · Zbl 0927.60071 · doi:10.1007/s002200050450
[6] Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of external branches in coalescence trees: genetic diversity within species. Theoret. Pop. Biol. 72 , 245–252. · Zbl 1123.92024 · doi:10.1016/j.tpb.2007.05.003
[7] Carmona, P., Petit, F. and Yor, M. (1997). On the distribution and asymptotic results for exponential integrals of Lévy processes. In Exponential Functionals and Principal Values Related to Brownian Motion , ed. M. Yor, Biblioteca de la Revista Matematica Iberoamericana, Madrid, pp. 73–121. · Zbl 0905.60056
[8] Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Prob. 18 , 997–1025. · Zbl 1141.60007 · doi:10.1214/07-AAP476
[9] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Process. Appl. 117 , 1404–1421. · Zbl 1129.60069 · doi:10.1016/j.spa.2007.01.011
[10] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 , 319–336. · Zbl 1187.05068 · doi:10.1002/rsa.20233
[11] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Pop. Biol. 3 , 87–112. · Zbl 0245.92009 · doi:10.1016/0040-5809(72)90035-4
[12] Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen–Sznitman coalescent. Markov Process. Relat. Fields 15 , 387–416. · Zbl 1203.60110
[13] Gnedin, A. V. (2004). The Bernoulli sieve. Bernoulli 10 , 79–96. · Zbl 1044.60005 · doi:10.3150/bj/1077544604
[14] Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in \(\Lambda\)-coalescents. Electron. J. Prob. 12 , 1547–1567. · Zbl 1190.60061
[15] Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Prob. 12 , 28–35. · Zbl 1133.60012
[16] Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40 , 206–228. · Zbl 1157.60041 · doi:10.1239/aap/1208358893
[17] Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in beta(2,b)-coalescents. Bernoulli 15 , 829–845. · Zbl 1208.60081 · doi:10.3150/09-BEJ192
[18] Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob. Spec. Vol. 19A ), eds J. Gani and E. J. Hannan, Applied Probability Trust, Sheffield, pp. 27–43. · Zbl 0516.92011 · doi:10.2307/3213548
[19] Möhle, M. (2005). Coalescent theory – simultaneous multiple collisions and sampling distributions. Oberwolfach Reports 40 , 2279–2282.
[20] Möhle, M. (2006). On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12 , 35–53. · Zbl 1099.92052
[21] Möhle, M. (2006). On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38 , 750–767. · Zbl 1112.92046 · doi:10.1239/aap/1158685000
[22] Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Prob. 29 , 1547–1562. · Zbl 1013.92029 · doi:10.1214/aop/1015345761
[23] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870–1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[24] Sagitov, S. (2003). Convergence to the coalescent with simultaneous multiple mergers. J. Appl. Prob. 40 , 839–854. · Zbl 1052.92044 · doi:10.1239/jap/1067436085
[25] Schweinsberg, J. (2000). A necessary and sufficient condition for the \(\Lambda\)-coalescent to come down from infinity. Electron. Commun. Prob. 5 , 1–11. · Zbl 0953.60072
[26] Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Prob. 5 , 50 pp. · Zbl 0959.60065
[27] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Prob. 11 , 750–783. JSTOR: · Zbl 0417.60073 · doi:10.2307/1426858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.