The impact of Allee effect on a predator-prey system with Holling type II functional response. (English) Zbl 1202.92088

Summary: The Allee effect is incorporated into a predator-prey model with Holling type II functional response. Compared with the predator-prey model without Allee effect, we find that the Allee effect of the prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of the prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes Hopf bifurcations and heteroclinic bifurcations. The Allee effect of the prey species can lead to unstable periodical oscillations. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of the predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.


92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations
37N25 Dynamical systems in biology


Full Text: DOI


[1] Callaway, R. M.; Walker, L. R., Competition and facilitation: a synthetic approach to interactions in plant communities, Ecology, 78, 1958-1965 (1997)
[2] Hacker, S. D.; Gaines, S. D., Some implications of direct positive interactions for species diversity, Ecology, 78, 1990-2003 (1997)
[3] Stephens, P. A.; Sutherland, W. J., Vertebrate mating systems, Allee effects and conservation, (Apollonio, M.; Festa-Bianchet, M.; Mainardi, D., Vertebrate Mating Systems (2000), World Scientific Publishing: World Scientific Publishing London)
[4] Allee, W. C., Animal Aggregations, A Study in General Sociology (1931), University of Chicago Press: University of Chicago Press Chicago, USA
[5] Bertness, M. D.; Leonard, G. H., The role of positive interactions in communities: lessons from intertidal habitats, Ecology, 78, 1976-1989 (1997)
[6] Liermann, M.; Hilborn, R., Depensation: evidence, models and implications, Fish and Fisheries, 2, 33-58 (2001)
[7] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the Allee effect, Trends in Ecology and Evolution, 14, 405-410 (1999)
[8] Groom, M. J., Allee effects limit population viability of an annual plant, The American Naturalist, 151, 487-496 (1998)
[9] Kuussaari, M.; Saccheri, I.; Camara, M.; Hanski, I., Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82, 384-392 (1998)
[10] Courchamp, F.; Grenfell, B.; Clutton-Brock, T., Population dynamics of obligate cooperators, Proceedings of the Royal Society of London Series B - Biological Sciences, 266, 557-563 (1999)
[11] Stephens, P. A.; Sutherland, W. J., Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution, 14, 401-404 (1999)
[12] Van Kooten, T.; de Roos, A. M.; Persson, L., Bistability and an Allee effect as emergent consequences of stage-specific predation, Journal of Theoretical Biology, 203, 67-74 (2005) · Zbl 1445.92254
[13] McCarthy, M. A., The Allee effect, finding mates and theoretical models, Ecological Modelling, 103, 99-102 (1997)
[14] Franck, C.; Tim, C. B.; Bryan, G., Inverse density dependence and the Allee effect, Perspectives, 14, 405-410 (1999)
[15] Burgman, M. A.; Ferson, S.; Akcakaya, H. R., Risk Assessment in Conservation Biology (1993), Chapman and Hall: Chapman and Hall London
[16] Lotka, A. J., Elements of Physical Biology (1926), Williams & Wilkins: Williams & Wilkins Baltimore · JFM 51.0416.06
[17] Volterra, V., Lecons sur la théorie mathématique de la lutte pour la vie (1931), Gauthier-Villars: Gauthier-Villars Paris · JFM 57.0466.02
[18] Gause, G. F., The Struggle for Existence (1934), Williams & Wilkins: Williams & Wilkins Baltimore
[19] Wang, W. D.; Mulone, G.; Salemi, F.; Salone, V., Permanence and stability of a stage-structured predator-prey model, Journal of Mathematical Analysis and Applications, 262, 499-528 (2001) · Zbl 0997.34069
[20] Neubert, M. G.; Klepac, P.; Driessche, P., Stabilizing dispersal delays in predator-prey metapopulation models, Theoretical Population Biology, 61, 339-347 (2002) · Zbl 1038.92032
[21] Zhou, S. R.; Liu, Y. F.; Wang, G., The stability of predator-prey systems subject to the Allee effects, Theoretical Population Biology, 67, 23-31 (2005) · Zbl 1072.92060
[22] Kent, A.; Doncaster, C. P.; Sluckin, T., Consequences for predators of rescue and Allee effects on prey, Ecological Modelling, 162, 233-245 (2003)
[23] Ferdy, J. B.; Molofsky, J., Allee effect, spatial structure and species coexistence, Journal of Theoretical Biology, 217, 413-424 (2002)
[24] Van Voorn, G. A.K.; Hemerik, L.; Boer, M. P.; Kooi, B. W., Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209, 451-469 (2007) · Zbl 1126.92062
[25] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1996), Springer: Springer New York
[26] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., Numerical continuation of branch points of limit cycles in MATCONT, Lecture Notes in Computer Science, 3037, 42-49 (2004) · Zbl 1086.65538
[27] Wang, W. D.; Ma, Z. E., Asymptotic behavior of a predator-prey system with diffusion and delays, Journal of Mathematical Analysis and Applications, 206, 191-204 (1997) · Zbl 0872.92019
[28] Zu, J.; Wang, W. D.; Takeuchi, Y.; Zu, B.; Wang, K. F., On evolution under symmetric and asymmetric competitions, Journal of Theoretical Biology, 254, 239-251 (2008) · Zbl 1400.92385
[29] Salemi, F.; Salone, V.; Wang, W. D., Stability of a competition model with two-stage structure, Applied Mathematics and Computation, 99, 221-231 (1999) · Zbl 0931.92029
[30] Xu, R.; Chaplain, M. A.J.; Davidson, F. A., Persistence and global stability of a ratio-dependent predator-prey model with stage structure, Applied Mathematics and Computation, 158, 729-744 (2004) · Zbl 1058.92053
[31] Zu, J.; Wang, W. D.; Zu, B., Evolutionary dynamics of prey-predator systems with Holling type II functional response, Mathematical Biosciences and Engineering, 4, 221-237 (2007) · Zbl 1123.92028
[32] Zu, J.; Mimura, M.; Wakano, J. Y., The evolution of pheno typic traits in a predator-prey system subject to Allee effect, Journal of Theoretical Biology, 262, 528-543 (2010) · Zbl 1403.92195
[33] Wang, J. F.; Shi, J. P.; Wei, J. J., Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.