zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The impact of Allee effect on a predator-prey system with Holling type II functional response. (English) Zbl 1202.92088
Summary: The Allee effect is incorporated into a predator-prey model with Holling type II functional response. Compared with the predator-prey model without Allee effect, we find that the Allee effect of the prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of the prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes Hopf bifurcations and heteroclinic bifurcations. The Allee effect of the prey species can lead to unstable periodical oscillations. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of the predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.

34C60Qualitative investigation and simulation of models (ODE)
34D20Stability of ODE
37N25Dynamical systems in biology
Full Text: DOI
[1] Callaway, R. M.; Walker, L. R.: Competition and facilitation: a synthetic approach to interactions in plant communities, Ecology 78, 1958-1965 (1997)
[2] Hacker, S. D.; Gaines, S. D.: Some implications of direct positive interactions for species diversity, Ecology 78, 1990-2003 (1997)
[3] Stephens, P. A.; Sutherland, W. J.: Vertebrate mating systems, allee effects and conservation, Vertebrate mating systems (2000)
[4] Allee, W. C.: Animal aggregations, A study in general sociology, (1931)
[5] Bertness, M. D.; Leonard, G. H.: The role of positive interactions in communities: lessons from intertidal habitats, Ecology 78, 1976-1989 (1997)
[6] Liermann, M.; Hilborn, R.: Depensation: evidence, models and implications, Fish and fisheries 2, 33-58 (2001)
[7] Courchamp, F.; Clutton-Brock, T.; Grenfell, B.: Inverse density dependence and the allee effect, Trends in ecology and evolution 14, 405-410 (1999)
[8] Groom, M. J.: Allee effects limit population viability of an annual plant, The American naturalist 151, 487-496 (1998)
[9] Kuussaari, M.; Saccheri, I.; Camara, M.; Hanski, I.: Allee effect and population dynamics in the glanville fritillary butterfly, Oikos 82, 384-392 (1998)
[10] Courchamp, F.; Grenfell, B.; Clutton-Brock, T.: Population dynamics of obligate cooperators, Proceedings of the royal society of London series B -- biological sciences 266, 557-563 (1999)
[11] Stephens, P. A.; Sutherland, W. J.: Consequences of the allee effect for behaviour, ecology and conservation, Trends in ecology and evolution 14, 401-404 (1999)
[12] Van Kooten, T.; De Roos, A. M.; Persson, L.: Bistability and an allee effect as emergent consequences of stage-specific predation, Journal of theoretical biology 203, 67-74 (2005)
[13] Mccarthy, M. A.: The allee effect, finding mates and theoretical models, Ecological modelling 103, 99-102 (1997)
[14] Franck, C.; Tim, C. B.; Bryan, G.: Inverse density dependence and the allee effect, Perspectives 14, 405-410 (1999)
[15] Burgman, M. A.; Ferson, S.; Akcakaya, H. R.: Risk assessment in conservation biology, (1993)
[16] Lotka, A. J.: Elements of physical biology, (1926) · Zbl 51.0416.06
[17] Volterra, V.: Lecons sur la théorie mathématique de la lutte pour la vie, (1931) · Zbl 0002.04202
[18] Gause, G. F.: The struggle for existence, (1934) · Zbl 60.1113.08
[19] Wang, W. D.; Mulone, G.; Salemi, F.; Salone, V.: Permanence and stability of a stage-structured predator -- prey model, Journal of mathematical analysis and applications 262, 499-528 (2001) · Zbl 0997.34069 · doi:10.1006/jmaa.2001.7543
[20] Neubert, M. G.; Klepac, P.; Driessche, P.: Stabilizing dispersal delays in predator -- prey metapopulation models, Theoretical population biology 61, 339-347 (2002) · Zbl 1038.92032 · doi:10.1006/tpbi.2002.1578
[21] Zhou, S. R.; Liu, Y. F.; Wang, G.: The stability of predator -- prey systems subject to the allee effects, Theoretical population biology 67, 23-31 (2005) · Zbl 1072.92060 · doi:10.1016/j.tpb.2004.06.007
[22] Kent, A.; Doncaster, C. P.; Sluckin, T.: Consequences for predators of rescue and allee effects on prey, Ecological modelling 162, 233-245 (2003)
[23] Ferdy, J. B.; Molofsky, J.: Allee effect, spatial structure and species coexistence, Journal of theoretical biology 217, 413-424 (2002)
[24] Van Voorn, G. A. K.; Hemerik, L.; Boer, M. P.; Kooi, B. W.: Heteroclinic orbits indicate overexploitation in predator -- prey systems with a strong allee effect, Mathematical biosciences 209, 451-469 (2007) · Zbl 1126.92062 · doi:10.1016/j.mbs.2007.02.006
[25] Guckenheimer, J.; Holmes, P. J.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1996) · Zbl 0515.34001
[26] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.: Numerical continuation of branch points of limit cycles in MATCONT, Lecture notes in computer science 3037, 42-49 (2004) · Zbl 1086.65538 · doi:10.1007/b97988
[27] Wang, W. D.; Ma, Z. E.: Asymptotic behavior of a predator -- prey system with diffusion and delays, Journal of mathematical analysis and applications 206, 191-204 (1997) · Zbl 0872.92019 · doi:10.1006/jmaa.1997.5212
[28] Zu, J.; Wang, W. D.; Takeuchi, Y.; Zu, B.; Wang, K. F.: On evolution under symmetric and asymmetric competitions, Journal of theoretical biology 254, 239-251 (2008)
[29] Salemi, F.; Salone, V.; Wang, W. D.: Stability of a competition model with two-stage structure, Applied mathematics and computation 99, 221-231 (1999) · Zbl 0931.92029 · doi:10.1016/S0096-3003(97)10180-1
[30] Xu, R.; Chaplain, M. A. J.; Davidson, F. A.: Persistence and global stability of a ratio-dependent predator -- prey model with stage structure, Applied mathematics and computation 158, 729-744 (2004) · Zbl 1058.92053 · doi:10.1016/j.amc.2003.10.012
[31] Zu, J.; Wang, W. D.; Zu, B.: Evolutionary dynamics of prey -- predator systems with Holling type II functional response, Mathematical biosciences and engineering 4, 221-237 (2007) · Zbl 1123.92028 · doi:10.3934/mbe.2007.4.221
[32] Zu, J.; Mimura, M.; Wakano, J. Y.: The evolution of pheno typic traits in a predator -- prey system subject to allee effect, Journal of theoretical biology 262, 528-543 (2010)
[33] Wang, J. F.; Shi, J. P.; Wei, J. J.: Predator-prey system with strong allee effect in prey, Journal of mathematical biology (2010) · Zbl 1232.92076