zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of stochastic perturbed chaotic neural networks with mixed delays. (English) Zbl 1202.93057
Summary: We study the synchronization problem of a class of chaotic neural networks with time-varying delays and unbounded distributed delays under stochastic perturbations. By using Lyapunov-Krasovskii functional, drive-response concept, output coupling with delay feedback and Linear Matrix Inequality (LMI) approach, we obtain some sufficient conditions in terms of LMIs ensuring the exponential synchronization of the addressed neural networks. The feedback controllers can be easily obtained by solving the derived LMIs. Moreover, the main results are generalizations of some recent results reported in the literature. A numerical example is also provided to demonstrate the effectiveness and applicability of the obtained results.

93C15Control systems governed by ODE
93B52Feedback control
93D30Scalar and vector Lyapunov functions
92B20General theory of neural networks (mathematical biology)
93E03General theory of stochastic systems
93C73Perturbations in control systems
34H10Chaos control (ODE)
LMI toolbox
Full Text: DOI
[1] Aihara, K.; Takabe, T.; Toyoda, M.: Chaotic neural networks, Physics letters A 144, 333-340 (1990)
[2] Kwok, T.; Smith, K.: Experimental analysis of chaotic neural network models for combinatorial optimization under a unifying framework, Neural networks 13, 731-744 (2000)
[3] Yu, W.; Cao, J.: Cryptography based on delayed chaotic neural networks, Physics letters A 356, 333-338 (2006) · Zbl 1160.81356 · doi:10.1016/j.physleta.2006.03.069
[4] Zhang, Y.; He, Z.: A secure communication scheme based on cellular neural networks, Proceedings of the IEEE international conference on intelligent processing systems 1, 521-524 (1997)
[5] Tan, Z.; Ali, M.: Associative memory using synchronization in a chaotic neural network, International journal of modern physics C 12, 19-29 (2001)
[6] Milanovic, V.; Zaghloul, M.: Synchronization of chaotic neural networks and applications to communications, International journal of bifurcation and chaos 6, 2571-2585 (1996) · Zbl 1298.94005
[7] Chen, G.; Zhou, J.; Liu, Z.: Global synchronizaton of coupled delayed neural networks and applications to chaotic CNN model, International journal of bifurcation chaos 14, 2229-2240 (2004) · Zbl 1077.37506 · doi:10.1142/S0218127404010655
[8] Lu, H.: Chaotic attractors in delayed neural networks, Physics letters A 298, 109-116 (2002) · Zbl 0995.92004 · doi:10.1016/S0375-9601(02)00538-8
[9] Gilli, M.: Strange attractors in delayed cellular neural networks, IEEE transactions on circuits and systems I 40, 849-853 (1993) · Zbl 0844.58056 · doi:10.1109/81.251826
[10] Cao, J.: On stability of delayed cellular neural networks, Physics letters A 261, 303-308 (1999) · Zbl 0935.68086 · doi:10.1016/S0375-9601(99)00552-6
[11] Zhu, Q.; Cao, J.: Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays, Discrete dynamics in nature and society 2009, 1-20 (2009) · Zbl 1185.93147 · doi:10.1155/2009/490515
[12] Qiu, J.; Cao, J.: Delay-dependent exponential stability for a class of neural networks with time delays and reaction--diffusion terms, Journal of the franklin institute 346, 301-314 (2009) · Zbl 1166.93368 · doi:10.1016/j.jfranklin.2008.11.002
[13] Li, X.: Global exponential stability for a class of neural networks, Applied mathematics letters 22, 1235-1239 (2009) · Zbl 1173.34345 · doi:10.1016/j.aml.2009.01.036
[14] Xia, Y.; Huang, Z.; Han, M.: Exponential p-stability of delayed Cohen--Grossberg-type BAM neural networks with impulses, Chaos, solitons and fractals 38, 806-818 (2008) · Zbl 1146.34329 · doi:10.1016/j.chaos.2007.01.009
[15] Xia, Y.; Cao, J.; Huang, Z.: Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses, Chaos, solitons and fractals 34, 1599-1607 (2007) · Zbl 1152.34343 · doi:10.1016/j.chaos.2006.05.003
[16] Li, X.: Existence and global exponential stability of periodic solution for impulsive Cohen--Grossberg-type BAM neural networks with continuously distributed delays, Applied mathematics and computation 215, 292-307 (2009) · Zbl 1190.34093 · doi:10.1016/j.amc.2009.05.005
[17] Li, X.; Chen, Z.: Stability properties for Hopfield neural networks with delays and impulsive perturbations, Nonlinear analysis: real world applications 10, 3253-3265 (2009) · Zbl 1162.92003 · doi:10.1016/j.nonrwa.2008.10.028
[18] Yin, L.; Li, X.: Impulsive stabilization for a class of neural networks with both time-varying and distributed delays, Advances in difference equations 2009, 1-12 (2009) · Zbl 05575262
[19] Song, Q.: Design of controller on synchronization of chaotic neural networks with mixed time-varying delays, Neurocomputing 72, 3288-3295 (2009)
[20] Liu, M.: Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach, Neural networks 22, 949-957 (2009)
[21] Song, Q.: Synchronization analysis of coupled connected neural networks with mixed time delays, Neurocomputing 72, 3907-3914 (2009)
[22] Cao, J.; Li, L.: Cluster synchronization in an array of hybrid coupled neural networks with delay, Neural networks 22, 335-342 (2009)
[23] Yang, Y.; Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A: statistical mechanics and its applications 386, 492-502 (2007)
[24] Cao, J.; Li, P.; Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling, Physics letters A 353, 318-325 (2006)
[25] Li, T.: Exponential synchronization of chaotic neural networks with mixed delays, Neurocomputing 71, 3005-3019 (2008)
[26] Li, T.: Synchronization control of chaotic neural networks with time-varying and distributed delays, Nonlinear analysis: theory, methods and applications 71, 2372-2384 (2009) · Zbl 1171.34049 · doi:10.1016/j.na.2009.01.079
[27] Haykin, S.: Neural networks, (1994) · Zbl 0828.68103
[28] Blythe, S.; Mao, X.; Liao, X.: Stability of stochastic delay neural networks, Journal of the franklin institute 338, 481-495 (2001) · Zbl 0991.93120 · doi:10.1016/S0016-0032(01)00016-3
[29] Sun, Y.; Cao, J.: Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation, Physics letters A 364, 277-285 (2007) · Zbl 1203.93110 · doi:10.1016/j.physleta.2006.12.019
[30] Sun, Y.; Cao, J.; Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, 2477-2485 (2007)
[31] Yang, X.; Cao, J.: Stochastic synchronization of coupled neural networks with intermittent control, Physics letters A 373, 3259-3272 (2009) · Zbl 1233.34020 · doi:10.1016/j.physleta.2009.07.013
[32] Gu, H.: Adaptive synchronization for competitive neural networks with different time scales and stochastic perturbation, Neurocomputing 73, 350-356 (2009)
[33] Chen, Z.: Complete synchronization for impulsive Cohen--Grossberg neural networks with delay under noise perturbation, Chaos, solitons and fractals 42, 1664-1669 (2009) · Zbl 1198.34088 · doi:10.1016/j.chaos.2009.03.063
[34] Li, X.; Cao, J.: Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the franklin institute 345, 779-791 (2008) · Zbl 1169.93350 · doi:10.1016/j.jfranklin.2008.04.012
[35] Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physica A 373, 252-260 (2007)
[36] Tang, Y.; Qiu, R.; Fang, J.; Miao, Q.; Xia, M.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Physics letters A 372, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[37] Liu, Z.: Pth moment exponential synchronization analysis for a class of stochastic neural networks with mixed delays, Communications in nonlinear science and numerical simulation 15, 1899-1909 (2010) · Zbl 1222.65012
[38] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide, (1995)
[39] Bondarenko, V.: High-dimensional chaotic neural network under external sinusoidal force, Physics letters A 236, 513-519 (1997)
[40] Yuan, J.; Fine, T.: Neural-network design for small training sets of high dimension, IEEE transactions on neural networks 9, 266-280 (1998)
[41] Liu, Y.; Wang, Z.; Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural networks 19, 667-675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[42] Wang, Z.; Shu, H.; Liu, Y.; Ho, D. W. C.; Liu, X.: Robust stability analysis of generalized neural networks with discrete and distributed time delays, Chaos, solitons and fractals 30, 886-896 (2006) · Zbl 1142.93401 · doi:10.1016/j.chaos.2005.08.166
[43] Tang, Y.; Fang, J.: Robust synchronization in an array of fuzzy delayed cellular neural networks with stochastically hybrid coupling, Neurocomputing 72, 3253-3262 (2009)
[44] Tang, Y.; Fang, J.; Xia, M.; Gu, X.: Synchronization of Takagi--sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays, Applied mathematical modelling 34, 843-855 (2010) · Zbl 1185.93145 · doi:10.1016/j.apm.2009.07.015