×

Integration on valuation fields over local fields. (English) Zbl 1203.11081

Let \(F\) be a valuation field with valuation group \(\Gamma\) and integers \({\mathcal O}_F\) whose residue field \(\overline{F}\) is a non-discrete, locally compact field (i.e. a local field: \({\mathbb R},{\mathbb C}\) or non-archimedean). Given a Haar integrable function \(f:\overline{F}\rightarrow{\mathbb C}\), consider the lift \(f^{0,0}\) of \(f\) to \({\mathcal O}_F\) together with its scalings \(f^{0,0}(\alpha x+a), a\in F, \alpha\in F^{\times}\). An integral is defined on the space spanned by such \(f^{0,0}\), with values in \({\mathbb C}\Gamma\) (the complex group algebra of \(\Gamma\)). The paper proceeds to develop some harmonic analysis for fields that are self-dual in a suitable sense.
The main results generalise results of I. Fesenko [Doc. Math., J. DMV Extra Vol., 261–284 (2003; Zbl 1130.11335); Proceedings of the St. Petersburg Mathematical Society. Vol. XII. Transl. from the Russian. Providence, RI: American Mathematical Society (AMS). Translations. Series 2. American Mathematical Society 219, 149–165 (2006; Zbl 1203.11080)]. The final sections of the paper are devoted to zeta integrals, including interesting connections with quantum physics.

MSC:

11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11S40 Zeta functions and \(L\)-functions
12J10 Valued fields
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math., 124 (2002), no. 5, 879-920. · Zbl 1084.11064 · doi:10.1353/ajm.2002.0026
[2] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II, Doc. Math. extra vol. Kazuya Kato’s fiftieth birthday (2003), 5-72, (electronic). · Zbl 1127.11349
[3] T. M. Apostol, Mathematical analysis , Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., second ed., 1974. · Zbl 0309.26002
[4] J. M. Borger, Conductors and the moduli of residual perfection, Math. Ann., 329 (2004), no. 1, 1-30. · Zbl 1096.11040 · doi:10.1007/s00208-003-0490-1
[5] J. M. Borger, A monogenic Hasse-Arf theorem, J. Théor. Nombres Bordeaux, 16 (2004), no. 2, 373-375. · Zbl 1077.13011 · doi:10.5802/jtnb.451
[6] D. Bump, Automorphic forms and representations , vol. 55 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997. · Zbl 0911.11022
[7] R. Cluckers, Igusa and Denef-Sperber conjectures on nondegenerate \(p\)- adic exponential sums, Duke Math. J., 141 (2008), no. 1, 205-216. · Zbl 1133.11048 · doi:10.1215/S0012-7094-08-14116-X
[8] R. Cluckers, Igusa’s conjecture on exponential sums modulo \(p\) and \(p ^ 2\) and the motivic oscillation index, Int. Math. Res. Not. IMRN (2008), no. 4, Art.ID rnm118, 20, pp. · Zbl 1225.11100 · doi:10.1093/imrn/rnm118
[9] J. Denef, The rationality of the Poincaré series associated to the \(p\)-adic points on a variety, Invent. Math., 77 (1984), no. 1, 1-23. · Zbl 0537.12011 · doi:10.1007/BF01389133
[10] I. Fesenko, A multidimensional local theory of class fields II (Russian), Algebra i Analiz, 3 (1991), no. 5, 168-189; translation in St. Petersburg Math. J. 3 (1992), no. 5, 1103-1126. · Zbl 0791.11063
[11] I. Fesenko, Topological Milnor \(K\)-groups of higher local fields, in [Fesenk o1999?], 61-74. · Zbl 1008.11065
[12] I. Fesenko, Analysis on arithmetic schemes I, Doc. Math. Kazuya Kato’s fiftieth birthday (2003), 261-284 (electronic), available at, http://www.maths.nott.ac.uk/personal/ibf/. · Zbl 1130.11335
[13] I. Fesenko, Measure, integration and elements of harmonic analysis on generalized loop spaces, in Proceedings of the St. Petersburg Mathematical Society Vol. XII, vol. 219 of Amer. Math. Soc. Transl. Ser. 2 (2006), Providence, RI, Amer. Math. Soc., 149-165, available at, http://www.maths.nott.ac.uk/personal/ibf/. · Zbl 1203.11080
[14] I. Fesenko and M. Kurihara, Eds., Invitation to higher local fields , vol. 3 of Geometry & Topology Monographs, Geometry & Topology Publications, Coventry, 2000. Papers from the conference held in Münster, August 29-September 5, 1999.
[15] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions , vol. 121 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, second ed., 2002. With a foreword by I. R. Shafarevich. · Zbl 1156.11046
[16] I. B. Fesenko, Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J., 8 (2008), no. 2, 273-317, 399-400. · Zbl 1158.14023
[17] I. B. Fesenko, Analysis on arithmetic schemes II, 2008, expanded version of [Fesenko2008?], available at, http://www.maths.nott.ac.uk/personal/ibf/.
[18] I. Gelfand, D. Raikov and G. Shilov, Commutative normed rings , Chelsea Publishing Company, Bronx, New York, 1964.
[19] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras , vol. 260 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972. · Zbl 0244.12011
[20] P. R. Halmos, Measure Theory , D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[21] E. Hrushovski and D. Kazhdan, Integration in valued fields, in, Algebraic geometry and number theory , vol. 253 of Progr. Math., Birkh äuser Boston, Boston, MA, 2006, 261-405. · Zbl 1136.03025 · doi:10.1007/978-0-8176-4532-8_4
[22] E. Hrushovski and D. Kazhdan, The value ring of geometric motivic integration, and the Iwahori Hecke algebra of \(\mathrm SL_ 2\), with an appendix by Nir Avni, Geom. Funct. Anal., 17 (2008), no. 6, 1924-1967. · Zbl 1213.03046 · doi:10.1007/s00039-007-0648-1
[23] K. Iwasawa, ’Letter to J. Dieudonné’, in, Zeta functions in geometry (Tokyo, 1990), vol. 21 of Adv. Stud. Pure Math., Kinokuniya, Tokyo, 1992, 445-450. · Zbl 0835.11002
[24] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman’s Operational Calculus , Oxford University Press, 2000. · Zbl 0952.46044
[25] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, in, Algebraic \(K\) -theory and algebraic number theory (Honolulu, HI, 1987), vol. 83 of Contemp. Math., 101-131, Amer. Math. Soc., Providence, RI, 1989. · Zbl 0716.12006
[26] K. Kato, Class field theory, \(D\)-modules, and ramification on higher-dimensional schemes I, Amer. J. Math., 116 (1994), no. 4, 757-784. JSTOR: · Zbl 0864.11057 · doi:10.2307/2375001
[27] H. H. Kim and K.-H. Lee, Spherical Hecke algebras of \(\mathrm SL_ 2\) over \(2\)-dimensional local fields, Amer. J. Math., 126 (2004), 1381- 1399. · Zbl 1099.22009 · doi:10.1353/ajm.2004.0048
[28] H. H. Kim and K.-H. Lee, An invariant measure on \(\mathrm GL_ n\) over \(2 \)-dimensional local fields, University of Nottingham Mathematics preprint series, (2005).
[29] C. J. Moreno, Advanced Analytic Number Theory: L-Functions , vol. 115 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2005. · Zbl 1089.11002
[30] M. Morrow, Integration on product spaces and \(\mbox{GL}_n\) of a valuation fields over a local field, Communications in Number Theory and Physics, vol. 2 (2008), 3, 563-592. · Zbl 1171.28303 · doi:10.4310/CNTP.2008.v2.n3.a3
[31] M. Morrow, Fubini’s theorem and non-linear changes of variables over a two-dimensional local field,
[32] M. Morrow, Investigations in two-dimensional arithmetic geometry , Ph.D. thesis, School of Mathematical Sciences, University of Nottingham, 2009, available at http://www.maths.nottingham.ac.uk/personal/ pmzmtm/.
[33] A. N. Parshin, Higher dimensional local fields and \(L\)-functions, in [Fesenk o1999?], 199-213, 2000. · Zbl 1008.11060
[34] W. Rudin, Real and complex analysis , McGraw-Hill Book Co., New York, third ed., 1987. · Zbl 0925.00005
[35] J. T. Tate, Fourier analysis in number fields, and Hecke’s zeta- functions, in, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, 305-347.
[36] A. Weil, Fonction zêta et distributions, in Séminaire Bourbaki, Vol. 9 (1995), exp. no. 312, Soc. Math. France, Paris, 523-531.
[37] I. B. Zhukov, An approach to higher ramification theory, in [Fesenk o1999?], 143-150, (electronic). · Zbl 1008.11045
[38] I. B. Zhukov, On ramification theory in the case of an imperfect residue field, Mat. Sb., 194 (2003), 3-30. · Zbl 1063.11046 · doi:10.1070/SM2003v194n12ABEH000785
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.