Over convergent \(F\)-isocrystals and differential overcoherence. (\(F\)-isocristaux surconvergents et surcohérence différentielle.) (English) Zbl 1203.14025

This article is part of author’s successful attempt to build a category of arithmetic coefficients for varieties in car \(p>0\), stable by Grothendieck’s six operations (among which inverse images, direct images, tensor product, duality). The categories contructed by Caro are subcategories of arithmetic \(D\)-modules in the sense of P. Berthelot [\(p\)-adic cohomology and arithmetic applications (II). Paris: Société Mathématique de France. Astérisque 279, 1–80 (2002; Zbl 1098.14010)].
To achieve this goal, D. Caro first contructed a category of overcoherent arithmetic \(D\)-modules with Frobenius structure [J. Math. Sci., Tokyo 16, No. 1, 1–21 (2009; Zbl 1213.14041)], a priori stable by direct, inverse images and local cohomological functors, and then a subcategory of the previous one: the category of overholonomic \(D\)-modules. An essential step in his constructions is to prove that overconvergent \(F\)-isocrystals, which can be seen as elementary pieces in this theory, are overcoherent. This fact is the aim of this article, and is established for a variety \(Y\) smooth over a perfect field \(k\) of car \(p>0\). Caro proves moreover that complexes of arithmetic \(F\)-\(D\)-modules with bounded and overcoherent cohomology can be unscrewed into overconvergent \(F\)-isocrystals.


14F30 \(p\)-adic cohomology, crystalline cohomology
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
Full Text: DOI arXiv


[1] Berthelot, P.: Cohomologie cristalline des schémas de caractéristique p>0. Lect. Notes Math., vol. 407. Springer, Berlin (1974) · Zbl 0298.14012
[2] Berthelot, P.: Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Introductions aux cohomologies p-adiques (Luminy 1984). Mém. Soc. Math. Fr., Nouv. Sér. 23(3), 7–32 (1986)
[3] Berthelot, P.: Cohomologie rigide et cohomologie rigide à support propre. Première partie. Prépublication IRMAR 96-03. Université de Rennes (1996)
[4] Berthelot, P.: \(\mathcal{D}\) -modules arithmétiques, I. Opérateurs différentiels de niveau fini. Ann. Sci. Éc. Norm. Supér., IV. Sér. 29(2), 185–272 (1996)
[5] Berthelot, P.: \(\mathcal{D}\) -modules arithmétiques, II. Descente par Frobenius. Mém. Soc. Math. Fr., Nouv. Sér. 81, vi+136 (2000) · Zbl 0948.14017
[6] Berthelot, P.: Introduction à la théorie arithmétique des \(\mathcal{D}\) -modules. In: Cohomologies p-adiques et applications arithmétiques, II. Astérisque, vol. 279, pp. 1–80. Soc. Math. Fr., Paris (2002)
[7] Caro, D.: Dévissages des F-complexes de \(\mathcal{D}\) -modules arithmétiques en F-isocristaux surconvergents. Invent. Math. 166(2), 397–456 (2006) · Zbl 1114.14011
[8] Caro, D.: Fonctions L associées aux \(\mathcal{D}\) -modules arithmétiques. Thèse, Université de Rennes (2002)
[9] Caro, D.: \(\mathcal{D}\) -modules arithmétiques surcohérents. Application aux fonctions L. Ann. Inst. Fourier 54(6), 1943–1996 (2004) · Zbl 1129.14030
[10] Caro, D.: \(\mathcal{D}\) -modules arithmétiques associés aux isocristaux surconvergents. Cas lisse. ArXiv Mathematics e-prints (2005)
[11] Caro, D.: \(\mathcal{D}\) -modules arithmétiques surholonomes. ArXiv Mathematics e-prints (2005)
[12] Caro, D.: Fonctions L associées aux \(\mathcal{D}\) -modules arithmétiques. Cas des courbes. Compos. Math. 142(01), 169–206 (2006) · Zbl 1167.14012
[13] de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math., Inst. Hautes Étud. Sci. 83, 51–93 (1996) · Zbl 0916.14005
[14] Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. Éc. Norm. Supér., IV. Sér. 6, 553–603 (1973) (1974) · Zbl 0327.14001
[15] Étesse, J.-Y., Le Stum, B.: Fonctions L associées aux F-isocristaux surconvergents. I. Interprétation cohomologique. Math. Ann. 296(3), 557–576 (1993) · Zbl 0789.14015
[16] Étesse, J.-Y., Le Stum, B.: Fonctions L associées aux F-isocristaux surconvergents. II. Zéros et pôles unités. Invent. Math. 127(1), 1–31 (1997) · Zbl 0911.14011
[17] Kedlaya, K.S.: Full faithfulness for overconvergent F-isocrystals. In: Geometric Aspects of Dwork Theory, vol. I, II, pp. 819–835. Walter de Gruyter, Berlin (2004) · Zbl 1087.14018
[18] Mebkhout, Z., Narváez-Macarro, L.: Sur les coefficients de de Rham-Grothendieck des variétés algébriques. In: p-adic Analysis (Trento, 1989). Lect. Notes Math., vol. 1454, pp. 267–308. Springer, Berlin (1990)
[19] Monsky, P., Washnitzer, G.: Formal cohomology. I. Ann. Math. (2) 88, 181–217 (1968) · Zbl 0162.52504
[20] Noot-Huyghe, C.: Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narváez-Macarro. J. Algebr. Geom. 12(1), 147–199 (2003) · Zbl 1053.14015
[21] Tsuzuki, N.: Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals. Duke Math. J. 111(3), 385–418 (2002) · Zbl 1055.14022
[22] Virrion, A.: Dualité locale et holonomie pour les \(\mathcal{D}\) -modules arithmétiques. Bull. Soc. Math. Fr. 128(1), 1–68 (2000) · Zbl 0955.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.