×

Canonical subgroups of Barsotti-Tate groups. (English) Zbl 1203.14026

The paper under review generalises a theorem of A. Abbes and A. Mokrane [Publ. Math. Inst. Hautes Etud. Sci. 99, 117–162 (2004; Zbl 1062.14057)]. Assume \(V\) is a discrete valuation-ring of mixed characteristic \(p\), with perfect residue field, and \(G\) a truncated Barsotti-Tate group of level one over \(V\). Modulo \(p\) kernel of Frobenius defines a finite flat closed subscheme. The problem is to find a finite flat lift to \(V\). This is known for ordinary \(G\)’s, and shown here if the determinant of the adjoint Frobenius (the Verschiebung) on the Lie-algebra of the dual group has sufficiently small valuation (this valuation is zero for ordinary \(G\)). The lift is characterised by either the ramification theory of Abbes-Saito or by a refinement of Cartier-duality. The proof uses heavily the filtration on mod \(p\) vanishing cycles defined by Bloch-Kato.

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology

Citations:

Zbl 1062.14057

References:

[1] A. Abbes and A. Mokrane, ”Sous-groupes canoniques et cycles évanescents \(p\)-adiques pour les variétés abéliennes,” Publ. Math. Inst. Hautes Études Sci., vol. 99, pp. 117-162, 2004. · Zbl 1062.14057 · doi:10.1007/s10240-004-0022-x
[2] A. Abbes and T. Saito, ”Ramification of local fields with imperfect residue fields,” Amer. J. Math., vol. 124, iss. 5, pp. 879-920, 2002. · Zbl 1084.11064 · doi:10.1353/ajm.2002.0026
[3] F. Andreatta and C. Gasbarri, ”The canonical subgroup for families of abelian varieties,” Compos. Math., vol. 143, iss. 3, pp. 566-602, 2007. · Zbl 1219.11087 · doi:10.1112/S0010437X07002813
[4] M. Artin, ”Algebraization of formal moduli. I,” in Global Analysis (Papers in Honor of K. Kodaira), Tokyo: Univ. Tokyo Press, 1969, pp. 21-71. · Zbl 0205.50402
[5] P. Berthelot, L. Breen, and W. Messing, Théorie de Dieudonné Cristalline. II, New York: Springer-Verlag, 1982. · Zbl 0516.14015
[6] S. Bloch and K. Kato, ”\(p\)-adic étale cohomology,” Inst. Hautes Études Sci. Publ. Math., vol. 63, pp. 107-152, 1986. · Zbl 0613.14017 · doi:10.1007/BF02831624
[7] B. Conrad, ”Higher-level canonical subgroups in abelian varieties,” , preprint , 2005.
[8] M. Demazure, Bidualité des schémas abéliens, in Séminaire de Géométrie Algébrique, Orsay, (1967-1968).
[9] B. Dwork, ”\(p\)-adic cycles,” Inst. Hautes Études Sci. Publ. Math., vol. 37, pp. 27-115, 1969. · Zbl 0284.14008 · doi:10.1007/BF02684886
[10] G. Faltings and C. Chai, Degeneration of Abelian Varieties, New York: Springer-Verlag, 1990, vol. 22. · Zbl 0744.14031
[11] A. Grothendieck, ”Le groupe de Brauer III: Exemples et compléments,” in Dix Exposés sur la Cohomologie des Schémas, Amsterdam: North-Holland Publ. Co., 1968, vol. 3, pp. 88-188. · Zbl 0198.25901
[12] L. Illusie, ”Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck),” Astérisque, vol. 127, pp. 151-198, 1985. · Zbl 1182.14050
[13] K. Kato, ”On \(p\)-adic vanishing cycles (application of ideas of Fontaine-Messing),” in Algebraic Geometry, Amsterdam: North-Holland, 1987, pp. 207-251. · Zbl 0645.14009
[14] N. M. Katz, ”\(p\)-adic properties of modular schemes and modular forms,” in Modular Functions of One Variable, III, New York: Springer-Verlag, 1973, vol. 350, pp. 69-190. · Zbl 0271.10033
[15] M. Kisin and K. F. Lai, ”Overconvergent Hilbert modular forms,” Amer. J. Math., vol. 127, iss. 4, pp. 735-783, 2005. · Zbl 1129.11020 · doi:10.1353/ajm.2005.0027
[16] J. Lubin, ”Finite subgroups and isogenies of one-parameter formal Lie groups,” Ann. of Math., vol. 85, pp. 296-302, 1967. · Zbl 0166.02803 · doi:10.2307/1970443
[17] B. Mazur and W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, New York: Springer-Verlag, 1974, vol. 370. · Zbl 0301.14016 · doi:10.1007/BFb0061628
[18] D. Mumford, Geometric Invariant Theory, New York: Springer-Verlag, 1965, vol. 34. · Zbl 0147.39304
[19] M. Raynaud, ”Spécialisation du foncteur de Picard,” Inst. Hautes Études Sci. Publ. Math., vol. 38, pp. 27-76, 1970. · Zbl 0207.51602 · doi:10.1007/BF02684651
[20] T. Sekiguchi, F. Oort, and N. Suwa, ”On the deformation of Artin-Schreier to Kummer,” Ann. Sci. École Norm. Sup., vol. 22, iss. 3, pp. 345-375, 1989. · Zbl 0714.14024
[21] J. Tate and F. Oort, ”Group schemes of prime order,” Ann. Sci. École Norm. Sup., vol. 3, pp. 1-21, 1970. · Zbl 0195.50801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.