Long, Yao; Li, Zhenyang; Rui, Weiguo New travelling wave solutions for a nonlinearly dispersive wave equation of Camassa-Holm equation type. (English) Zbl 1203.35235 Appl. Math. Comput. 217, No. 4, 1315-1320 (2010). Summary: The integral bifurcation method is used to study a nonlinearly dispersive wave equation of Camassa-Holm equation type. Loop soliton solution and periodic loop soliton solution, solitary wave solution and solitary cusp wave solution, smooth periodic wave solution and non-smooth periodic wave solution of this equation are obtained, their dynamic characters are discussed. Some solutions have an interesting phenomenon that one solution admits multi-waves when parameters vary. Cited in 5 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems 35C08 Soliton solutions 35B10 Periodic solutions to PDEs Keywords:nonlinearly dispersive wave equation of Camassa-Holm equation type; integral bifurcation method; loop soliton solution; periodic loop soliton solution; solitary wave solution; solitary cusp wave solution PDF BibTeX XML Cite \textit{Y. Long} et al., Appl. Math. Comput. 217, No. 4, 1315--1320 (2010; Zbl 1203.35235) Full Text: DOI References: [1] Henrik, K., Stability of solitary waves for a nonlinearly dispersive equation, Disc. Conti. Dyn. Syst., 10, 709-717 (2004) · Zbl 1059.35012 [2] Yin, Z., On the Cauchy problem for a nonlinearly dispersive wave equation, J. Nonlinear Math. Phys, 10, 10-15 (2003) · Zbl 1021.35100 [3] Fuchssteiner, B.; Fokas, A. S., Symplectic structures, their Bachlund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114 [4] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 [5] Camassa, R.; Holm, D.; Hyman, J., A new integrable shallow water equation, Adv. Appl. Mech., 31, 1-33 (1994) · Zbl 0808.76011 [6] Dai, H. H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127, 193-207 (1998) · Zbl 0910.73036 [7] Dai, H. H.; Huo, Y., Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, Proc. Roy. Soc. Lond. A, 456, 331-363 (2000) · Zbl 1004.74046 [8] Constantin, A.; Strauss, WA., Stability of a class of solitary waves in compressible elastic rod, Phys. Lett. A, 270, 140-148 (2000) · Zbl 1115.74339 [9] Liu, Z.; Chen, C., Compactons in a general compressible hyperelastic rod, Choas, Solitons and Fractals, 22, 627-640 (2004) · Zbl 1116.74374 [10] Lenells, J., Traveling waves in compressible elastic rods, Disc. Conti. Dyn. Syst., 6, 151-167 (2006) · Zbl 1091.35098 [11] Benjamin, R. T.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. Lond., 272, 47-78 (1972) · Zbl 0229.35013 [12] Li, Y.-S., The multiple-soliton solution of the Camassa-Holm equation, Proc. Roy. Soc. Lond. A, 460, 2617-2627 (2004) · Zbl 1068.35109 [13] Rui, W.; He, B.; Long, Y.; Chen, C., The integral bifurcation method and its application for solving a family of third-order dispersive PDEs, Nonlinear Anal., 69, 1256-1267 (2008) · Zbl 1144.35461 [14] Rui, W.; Xie, S.; He, B.; Long, Y., Integral bifurcation method and its application for solving the modified equal width wave equation and its variants, Rostock. Math. Kolloq., 62, 87-106 (2007) · Zbl 1148.35079 [15] Rui, W.; Long, Y., New periodic loop solitons of the generalized KdV equation, Int. J. Nonlinear Sci. Numer. Simulat., 9, 441-444 (2008) [16] Emmanuel, Y., The extended \(F\)-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS, GZ equations, Phys. Lett. A, 340, 149-160 (2005) · Zbl 1145.35455 [18] Abdou, M. A., The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons and Fractals, 31, 95-104 (2007) · Zbl 1138.35385 [19] Zhang, S., A generalized auxiliary equation method and its application to the (2+1)-dimensional KdV equations, Appl. Math. Comput., 188, 1-6 (2006) · Zbl 1114.65355 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.