zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization between Chen system and Genesio system. (English) Zbl 1203.37066
Summary: This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes.

37D45Strange attractors, chaotic dynamics
34H10Chaos control (ODE)
93C40Adaptive control systems
93D21Adaptive or robust stabilization
Full Text: DOI
[1] Carroll, T. L.; Pecora, L. M.: IEEE trans. Circuits systems. 38, 453 (1991)
[2] Yang, X. S.; Duan, C. K.; Liao, X. X.: Chaos solitons fractals. 10, 1457 (1999)
[3] Agiza, H. N.; Yassen, M. T.: Phys. lett. A. 278, 191 (2001)
[4] Ho, M. C.; Hung, Y. C.: Phys. lett. A. 301, 424 (2002)
[5] Huang, L.; Feng, R.; Wang, M.: Phys. lett. A. 320, 271 (2004)
[6] Wang, Y. W.; Guan, Z. H.; Wang, H.: Phys. lett. A. 312, 34 (2003)
[7] Chen, S. H.; Lü, J. H.: Chaos solitons fractals. 14, 643 (2002)
[8] Wang, C.; Ge, S. S.: Chaos solitons fractals. 12, 1199 (2001)
[9] Li, Z.; Han, C.; Shi, S.: Phys. lett. A. 301, 224 (2002)
[10] Feki, M.: Chaos solitons fractals. 18, 141 (2003) · Zbl 1048.93508
[11] Lü, J. H.; Zhou, T. S.; Zhang, S. C.: Chaos solitons fractals. 14, 529 (2002)
[12] Alexeyev, A. A.; Shalfeev, V. D.: Int. J. Bifur. chaos. 5, 551 (1995)
[13] Yassen, M. T.: Chaos solitons fractals. 23, 131 (2005) · Zbl 1091.93520
[14] Ucar, A.; Lonngren, K. E.; Bai, E. W.: Chaos solitons fractals. 27, 1292 (2006)
[15] Li, C.; Liao, X.; Zhang, R.: Phys. lett. A. 328, 47 (2004)
[16] Yang, T.; Chua, L. O.: Int. J. Bifur. chaos. 7, 645 (1997)
[17] Park, J. H.: Chaos solitons fractals. 27, 549 (2006) · Zbl 1142.93348
[18] Yassen, M. T.: Phys. lett. A. 337, 335 (2005)
[19] Zhang, H.; Huang, W.; Wang, Z.; Chai, T.: Phys. lett. A. 350, 363 (2006)
[20] Park, J. H.: Chaos solitons fractals. 27, 1369 (2006) · Zbl 1142.93348
[21] Wang, Y. W.; Guan, Z. H.; Weng, X.: Chaos solitons fractals. 19, 899 (2004)
[22] Genesio, R.; Tesi, A.: Automatica. 28, 531 (1992)