Bejenaru, Ioan; Herr, Sebastian; Tataru, Daniel A convolution estimate for two-dimensional hypersurfaces. (English) Zbl 1203.42033 Rev. Mat. Iberoam. 26, No. 2, 707-728 (2010). Let \(\Sigma_1=yz\)-plane, \(\Sigma_2=xz\)-plane, \(\Sigma_3=xy\)-plane be coordinate hyperplanes in \(\mathbb{R}^3\). By the classical Loomis-Whitney inequality, \[ || f * g ||_{L^2 (\Sigma_3) }\leq C\, || f ||_{L^2 (\Sigma_1) } ||g ||_{L^2 (\Sigma_2) }. \] J. Bennet, A. Carbery and J. Wright [Math. Res. Lett. 12, No. 4, 443–457 (2005; Zbl 1106.26020)] extended this result to the case when \(\Sigma_1\), \(\Sigma_2\), and \(\Sigma_3\) are bounded subsets of transversal sufficiently smooth surfaces in \(\mathbb{R}^3\). In the present paper, the result by J. Bennet, A. Carbery, and J. Wright is generalized to a class of \(C^{1,\beta}\) hypersurfaces in \(\mathbb{R}^3\) under scaleable assumptions. Applications to non-linear dispersive equations are indicated. Reviewer: Boris Rubin (Baton Rouge) Cited in 1 ReviewCited in 25 Documents MSC: 42B35 Function spaces arising in harmonic analysis 47B38 Linear operators on function spaces (general) Keywords:transversality; hypersurface; convolution; \(L^2\) estimate; induction on scales Citations:Zbl 1106.26020 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Bejenaru, I.: Quadratic nonlinear derivative Schrödinger equations. II. Trans. Amer. Math. Soc. 360 (2008), no. 11, 5925-5957. · Zbl 1159.35064 · doi:10.1090/S0002-9947-08-04471-1 [2] Bejenaru, I. and De Silva, D.: Low regularity solutions for a 2D quadratic nonlinear Schrödinger equation. Trans. Amer. Math. Soc. 360 (2008), no. 11, 5805-5830. · Zbl 1155.35088 · doi:10.1090/S0002-9947-08-04415-2 [3] Bejenaru, I., Herr, S., Holmer, J. and Tataru, D.: On the 2D Zakharov system with \(L^2\)-Schrödinger data. Nonlinearity 22 (2009), no. 5, 1063-1089. · Zbl 1173.35651 · doi:10.1088/0951-7715/22/5/007 [4] Bennett, J., Carbery, A. and Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196 (2006), no. 2, 261-302. · Zbl 1203.42019 · doi:10.1007/s11511-006-0006-4 [5] Bennett, J., Carbery, A. and Wright, J.: A non-linear generalisation of the Loomis-Whitney inequality and applications. Math. Res. Lett. 12 (2005), no. 4, 443-457. · Zbl 1106.26020 · doi:10.4310/MRL.2005.v12.n4.a1 [6] Colliander, J.E., Delort, J.-M., Kenig, C.E. and Staffilani, G.: Bilinear estimates and applications to 2D NLS. Trans. Amer. Math. Soc. 353 (2001), no. 8, 3307-3325 (electronic). JSTOR: · Zbl 0970.35142 · doi:10.1090/S0002-9947-01-02760-X [7] Ionescu, A.D., Kenig, C.E. and Tataru, D.: Global well-posedness of the KP-I initial-value problem in the energy space. Invent. Math. 173 (2008), no. 2, 265-304. · Zbl 1188.35163 · doi:10.1007/s00222-008-0115-0 [8] Loomis, L.H. and Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc. 55 (1949), 961-962. · Zbl 0035.38302 · doi:10.1090/S0002-9904-1949-09320-5 [9] Tao, T.: Multilinear weighted convolution of \(L^2\)-functions, and applications to nonlinear dispersive equations. Amer. J. Math. 123 (2001), no. 5, 839-908. · Zbl 0998.42005 · doi:10.1353/ajm.2001.0035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.