Cianciaruso, Filomena; Marino, Giuseppe; Muglia, Luigi; Yao, Yonghong A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. (English) Zbl 1203.47043 Fixed Point Theory Appl. 2010, Article ID 383740, 19 p. (2010). Summary: We propose a modified hybrid projection algorithm to approximate a common fixed point of a \(k\)-strict pseudocontraction and of two sequences of nonexpansive mappings. We prove a strong convergence theorem of the proposed method and we obtain, as a particular case, approximation of solutions of systems of two equilibrium problems. Cited in 58 Documents MSC: 47J25 Iterative procedures involving nonlinear operators 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 49J40 Variational inequalities Keywords:modified hybrid projection algorithm; \(k\)-strict pseudocontraction; nonexpansive mappings; strong convergence; equilibrium problems PDF BibTeX XML Cite \textit{F. Cianciaruso} et al., Fixed Point Theory Appl. 2010, Article ID 383740, 19 p. (2010; Zbl 1203.47043) Full Text: DOI EuDML References: [1] Acedo GL, Xu H-K: Iterative methods for strict pseudo-contractions in Hilbert spaces.Nonlinear Analysis: Theory, Methods & Applications 2007,67(7):2258-2271. 10.1016/j.na.2006.08.036 · Zbl 1133.47050 [2] Browder FE, Petryshyn WV: Construction of fixed points of nonlinear mappings in Hilbert space.Journal of Mathematical Analysis and Applications 1967, 20: 197-228. 10.1016/0022-247X(67)90085-6 · Zbl 0153.45701 [3] Browder FE: Nonexpansive nonlinear operators in a Banach space.Proceedings of the National Academy of Sciences of the United States of America 1965, 54: 1041-1044. 10.1073/pnas.54.4.1041 · Zbl 0128.35801 [4] Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings.Proceedings of the American Mathematical Society 1972, 35: 171-174. 10.1090/S0002-9939-1972-0298500-3 · Zbl 0256.47045 [5] Kirk WA: A fixed point theorem for mappings which do not increase distances.The American Mathematical Monthly 1965, 72: 1004-1006. 10.2307/2313345 · Zbl 0141.32402 [6] Liu Q: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings.Nonlinear Analysis: Theory, Methods & Applications 1996,26(11):1835-1842. 10.1016/0362-546X(94)00351-H · Zbl 0861.47047 [7] Schu J: Iterative construction of fixed points of asymptotically nonexpansive mappings.Journal of Mathematical Analysis and Applications 1991,158(2):407-413. 10.1016/0022-247X(91)90245-U · Zbl 0734.47036 [8] Xu HK: Inequalities in Banach spaces with applications.Nonlinear Analysis: Theory, Methods & Applications 1991,16(12):1127-1138. 10.1016/0362-546X(91)90200-K · Zbl 0757.46033 [9] Xu HK: Existence and convergence for fixed points of mappings of asymptotically nonexpansive type.Nonlinear Analysis: Theory, Methods & Applications 1991,16(12):1139-1146. 10.1016/0362-546X(91)90201-B · Zbl 0747.47041 [10] Ceng L-C, Al-Homidan S, Ansari QH, Yao J-C: An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings.Journal of Computational and Applied Mathematics 2009,223(2):967-974. 10.1016/j.cam.2008.03.032 · Zbl 1167.47307 [11] Marino G, Xu H-K: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces.Journal of Mathematical Analysis and Applications 2007,329(1):336-346. 10.1016/j.jmaa.2006.06.055 · Zbl 1116.47053 [12] Marino G, Colao V, Qin X, Kang SM: Strong convergence of the modified Mann iterative method for strict pseudo-contractions.Computers and Mathematics with Applications 2009,57(3):455-465. 10.1016/j.camwa.2008.10.073 · Zbl 1165.65353 [13] Zhou H: Convergence theorems of fixed points for -strict pseudo-contractions in Hilbert spaces.Nonlinear Analysis: Theory, Methods & Applications 2008,69(2):456-462. 10.1016/j.na.2007.05.032 · Zbl 1220.47139 [14] Colao V, Marino G, Xu H-K: An iterative method for finding common solutions of equilibrium and fixed point problems.Journal of Mathematical Analysis and Applications 2008,344(1):340-352. 10.1016/j.jmaa.2008.02.041 · Zbl 1141.47040 [15] Moudafi A: Viscosity approximation methods for fixed-points problems.Journal of Mathematical Analysis and Applications 2000,241(1):46-55. 10.1006/jmaa.1999.6615 · Zbl 0957.47039 [16] Peng JW: Iterative algorithms for mixed equilibrium problems, strictly pseudocontractions and monotone mappings.Journal of Optimization Theory and Applications. In press · Zbl 1225.90136 [17] Peng, JW; Liou, YC; Yao, JC, An iterative algorithm combining viscosity method with parallel method for a generalized equilibrium problem and strict pseudocontractions, No. 2009, 21 (2009) · Zbl 1163.91463 [18] Cho YJ, Qin X, Kang JI: Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems.Nonlinear Analysis: Theory, Methods & Applications 2009,71(9):4203-4214. 10.1016/j.na.2009.02.106 · Zbl 1219.47105 [19] Browder FE: Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces.Archive for Rational Mechanics and Analysis 1967, 24: 82-90. · Zbl 0148.13601 [20] Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bulletin of the American Mathematical Society 1967, 73: 591-597. 10.1090/S0002-9904-1967-11761-0 · Zbl 0179.19902 [21] Takahashi W, Toyoda M: Weak convergence theorems for nonexpansive mappings and monotone mappings.Journal of Optimization Theory and Applications 2003,118(2):417-428. 10.1023/A:1025407607560 · Zbl 1055.47052 [22] Takahashi S, Takahashi W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space.Nonlinear Analysis: Theory, Methods & Applications 2008,69(3):1025-1033. 10.1016/j.na.2008.02.042 · Zbl 1142.47350 [23] Bianchi M, Schaible S: Generalized monotone bifunctions and equilibrium problems.Journal of Optimization Theory and Applications 1996,90(1):31-43. 10.1007/BF02192244 · Zbl 0903.49006 [24] Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems.The Mathematics Student 1994,63(1-4):123-145. · Zbl 0888.49007 [25] Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces.Journal of Nonlinear and Convex Analysis 2005,6(1):117-136. · Zbl 1109.90079 [26] Moudafi A: Weak convergence theorems for nonexpansive mappings and equilibrium problems.Journal of Nonlinear and Convex Analysis 2008,9(1):37-43. · Zbl 1167.47049 [27] Wang S, Zhou H, Song J: Viscosity approximation methods for equilibrium problems and fixed point problems of nonexpansive mappings and inverse-strongly monotone mappings.Methods and Applications of Analysis 2007,14(4):405-419. · Zbl 1184.47054 [28] Ceng L-C, Yao J-C: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems.Journal of Computational and Applied Mathematics 2008,214(1):186-201. 10.1016/j.cam.2007.02.022 · Zbl 1143.65049 [29] Chadli O, Chbani Z, Riahi H: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities.Journal of Optimization Theory and Applications 2000,105(2):299-323. 10.1023/A:1004657817758 · Zbl 0966.91049 [30] Brezis H: Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, France; 1983:xiv+234. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.