zbMATH — the first resource for mathematics

Convergence on composite iterative schemes for nonexpansive mappings in Banach spaces. (English) Zbl 1203.47053
Let $$E$$ be a reflexive Banach space with a uniformly Gateaux differentiable norm. Suppose that every weakly compact convex subset of $$E$$ has the fixed point property for nonexpansive mappings. Let $$C$$ be a nonempty closed convex subset of $$E$$, $$f: C \to C$$ be a contractive mapping (or a weakly contractive mapping), and $$T: C \to C$$ be a nonexpansive mapping with nonempty fixed point set $$F(T)$$. Let the sequence $$\{x_n\}$$ be generated by the following composite iterative scheme: \left\{\begin{aligned} &y_n=\lambda_n f(x_n)+(1-\lambda_n)Tx_n,\\ &x_{n+1}=(1-\beta_n)y_n+\beta_n Ty_n,\end{aligned}\right.\quad n\geq0. It is proved that $$\{x_n\}$$ converges strongly to a point in $$F(T)$$, which is a solution of a certain variational inequality, provided that the sequence $$\{\lambda_n\}\subset(0,1)$$ satisfies $$\lim_{n\rightarrow\infty}\lambda_n=0$$ and $$\sum_{n=1}^\infty\lambda_n=\infty$$, $$\{\beta_n\}\subset[0,a)$$ for some $$0<a<1$$, and the sequence $$\{x_n\}$$ is asymptotically regular.

MSC:
 47J25 Iterative procedures involving nonlinear operators 47H09 Contraction-type mappings, nonexpansive mappings, $$A$$-proper mappings, etc.
Full Text:
References:
 [2] doi:10.1090/S0002-9904-1967-11864-0 · Zbl 0177.19101 [4] doi:10.1016/0022-247X(80)90323-6 · Zbl 0437.47047 [6] doi:10.1090/S0002-9939-97-04033-1 · Zbl 0888.47034 [7] doi:10.1007/BF01190119 · Zbl 0797.47036 [9] doi:10.1006/jmaa.1996.0308 · Zbl 0956.47024 [12] doi:10.1016/j.jmaa.2004.08.022 · Zbl 1062.47069 [13] doi:10.1155/FPTA.2005.125 · Zbl 1109.47056 [15] doi:10.1006/jmaa.1999.6615 · Zbl 0957.47039 [17] doi:10.1016/j.jmaa.2004.04.059 · Zbl 1061.47060 [21] doi:10.1016/j.jmaa.2005.12.066 · Zbl 1111.47058 [22] doi:10.1016/j.na.2007.06.016 · Zbl 1142.47329 [24] doi:10.1016/j.na.2007.11.025 · Zbl 1182.47050 [25] doi:10.1016/j.jat.2005.11.017 · Zbl 1137.47055 [30] doi:10.1006/jmaa.1995.1289 · Zbl 0872.47031 [32] doi:10.1023/A:1012665832688 · Zbl 1049.90123 [33] doi:10.1155/S1085337503203018 · Zbl 1028.47049 [34] doi:10.1023/A:1023073621589 · Zbl 1043.90063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.