Maxwell strata in the Euler elastic problem. (English) Zbl 1203.49004

Summary: The classical Euler problem on stationary configurations of elastic rod in the plane is studied in detail by geometric control techniques as a left-invariant optimal control problem on the group of motions of a two-dimensional plane \(E(2)\). The attainable set is described, the existence and boundedness of optimal controls are proved. Extremals are parametrized by the Jacobi elliptic functions of natural coordinates induced by the flow of the mathematical pendulum on fibers of the cotangent bundle of \(E(2)\). The group of discrete symmetries of the Euler problem generated by reflections in the phase space of the pendulum is studied. The corresponding Maxwell points are completely described via the study of fixed points of this group. As a consequence, an upper bound on cut points in the Euler problem is obtained.


49J15 Existence theories for optimal control problems involving ordinary differential equations
49Q10 Optimization of shapes other than minimal surfaces
93C10 Nonlinear systems in control theory
74B20 Nonlinear elasticity
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65D07 Numerical computation using splines


Full Text: DOI arXiv


[1] A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, Sub-Riemannian sphere in Martinet flat case. ESAIM Control Optim. Calc. Var. 2 (1997). 377–448. · Zbl 0902.53033 · doi:10.1051/cocv:1997114
[2] A. A. Agrachev and Yu. L. Sachkov, Geometric control theory. Fizmatlit, Moscow (2004); English translation: Control theory from the geometric viewpoint. Springer-Verlag, Berlin (2004).
[3] _____, An intrinsic approach to the control of rolling bodies. Proc. 38th IEEE Conf. Decision and Control, Phoenix, Arizona, USA, December 7–10 (1999), Vol. 1, pp. 431–435.
[4] S. S. Antman, The influence of elasticity on analysis: Modern developments, Bull. Amer. Math. Soc. 9 (1983), No. 3, 267–291. · Zbl 0533.73001 · doi:10.1090/S0273-0979-1983-15185-6
[5] V. I. Arnold, Singularities of caustics and wave fronts. Kluwer (1990).
[6] D. Bernoulli, 26th letter to L. Euler (October, 1742). In: Correspondance mathématique et physique, Vol. 2, St. Petersburg (1843).
[7] J. Bernoulli, Véritable hypothèse de la résistance des solides, avec la demonstration de la corbure des corps qui font ressort. In: Collected works, Vo. 2, Geneva (1744).
[8] G. Birkhoff and C. R. de Boor, Piecewise polynomial interpolation and approximation. In: Approximation of Functions (Proc. Symp. General Motors Res. Lab., 1964), Elsevier, Amsterdam (1965), pp. 164–190.
[9] M. Born, Stabilität der elastischen Linie in Ebene und Raum. Preisschrift und Dissertation, Göttingen, Dieterichsche Universitäts-Buchdruckerei Göttingen (1906). Reprinted in: Ausgewählte Abhandlungen, Göttingen, Vanderhoeck & Ruppert (1963), Vol. 1, pp. 5–101.
[10] U. Boscain and F. Rossi, Invariant Carno–Caratheodory metrics on S 3, SO(3), SL(2), and lens spaces. SIAM J. Control (2008), accepted. · Zbl 1170.53016
[11] R. Brockett and L. Dai, Non-holonomic kinematics and the role of elliptic functions in constructive controllability. In: Nonholonomic Motion Planning (Z. Li and J. Canny, eds.), Kluwer, Boston (1993), pp. 1–21. · Zbl 0791.70009
[12] L. Cesari, Optimization. Theory and applications. Problems with ordinary differential equations. Springer-Verlag, New York–Heidelberg–Berlin (1983). · Zbl 0506.49001
[13] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti. Lausanne, Geneva (1744). · Zbl 0788.01072
[14] M. Golumb and J. Jerome, Equilibria of the curvature functional and manifolds of nonlinear interpolating spline curves. SIAM J. Math. Anal. 13 (1982), 421–458. · Zbl 0496.73082 · doi:10.1137/0513031
[15] S. Jacquet, Regularity of sub-Riemannian distance and cut locus. Preprint No. 35, May 1999, Universita degli Studi di Firenze, Dipartimento di Matematica Applicata ”G. Sansone,” Italy.
[16] C. G. J. Jacobi, Volresungen über Dynamik. G. Reimer, Berlin (1891).
[17] J. W. Jerome, Minimization problems and linear and nonlinear spline functions, I: Existence. SIAM J. Numer. Anal. 10 (1973), 808–819. · doi:10.1137/0710066
[18] ____, Smooth interpolating curves of prescribed length and minimum curvature. Proc. Amer. Math. Soc. 51 (1975), 62–66. · Zbl 0309.41002 · doi:10.1090/S0002-9939-1975-0380551-4
[19] V. Jurdjevic, The geometry of the ball-plate problem. Arch. Rat. Mech. Anal. 124 (1993), 305–328. · Zbl 0809.70005 · doi:10.1007/BF00375605
[20] _____, Non-Euclidean elastica. Amer. J. Math. 117 (1995), 93–125. · Zbl 0822.58010 · doi:10.2307/2375037
[21] _____, Geometric control theory. Cambridge Univ. Press (1997). · Zbl 0940.93005
[22] D. F. Lawden, Elliptic functions and applications. Springer-Verlag (1989). · Zbl 0689.33001
[23] A. Linnér, Unified representations of non-linear splines. J. Approx. Theory 84 (1996), 315–350. · Zbl 0858.41004 · doi:10.1006/jath.1996.0022
[24] A. E. H. Love, A treatise on the mathematical theory of elasticity. Dover, New York (1927).
[25] R. S. Manning, J. H. Maddocks, and J. D. Kahn, A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105 (1996), 5626–5646. · doi:10.1063/1.472373
[26] R. S. Manning, K. A. Rogers, and J. H.Maddocks, Isoperimetric conjugate points with application to the stability of DNA minicircles. Proc. Roy. Soc. London A 454 (1998), 3047–3074. · Zbl 1002.92507 · doi:10.1098/rspa.1998.0291
[27] D. Mumford, Elastica and computer vision. In: Algebraic geometry and its applications (C. L. Bajaj, Ed.), Springer-Verlag, New York (1994), pp. 491–506. · Zbl 0798.53003
[28] O. Myasnichenko, Nilpotent (3,6) sub-Riemannian problem. J. Dynam. Control Systems 8 (2002), No. 4, 573–597. · Zbl 1047.93014 · doi:10.1023/A:1020719503741
[29] L. Saalschütz, Der belastete Stab. Leipzig (1880).
[30] Yu. L. Sachkov, Exponential mapping in generalized Dido’s problem. Mat. Sb. 194 (2003), No. 9, 63–90. · Zbl 1054.31001 · doi:10.1070/SM2003v194n01ABEH000706
[31] _____, Discrete symmetries in the generalized Dido problem. Mat. Sb. 197 (2006), No. 2, 95–116. 235–257. · Zbl 1155.37004 · doi:10.1070/SM2006v197n01ABEH003748
[32] _____, The Maxwell set in the generalized Dido problem. Mat. Sb. 197 (2006), No. 4, 123–150. 595–621.
[33] _____, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sb. 197 (2006), No. 6, 111–160.
[34] _____, Maxwell strata in Euler’s elastic problem. Preprint SISSA 04/2007/M (January 15th 2007), Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy; available at: arXiv:0705.0614 [math.OC], 3 May 2007.
[35] _____, Conjugate points in Euler’s elastic problem. J. Dynam. Control Systems (accepted), available at: arXiv:0705.1003 [math.OC], 7 May 2007.
[36] _____, Exponential mapping in Euler’s elastic problem. In preparation. · Zbl 1309.49005
[37] A. V. Sarychev and D. F. M. Torres, Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics. Appl. Math. Optim. 41 (2000), 237–254. · Zbl 0961.49021 · doi:10.1007/s002459911013
[38] S. Timoshenko, History of strength of materials. McGraw-Hill, New York (1953).
[39] C. Truesdell, The influence of elasticity on analysis: The classic heritage. Bull. Amer. Math. Soc. 9 (1983), No. 3, 293–310. · Zbl 0555.73030 · doi:10.1090/S0273-0979-1983-15187-X
[40] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[41] S. Wolfram, Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, MA (1991). · Zbl 0671.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.