Conjugate points in the Euler elastic problem. (English) Zbl 1203.49005

Summary: For the classical Euler elastic problem, conjugate points are described. Inflexional elasticas admit the first conjugate point between the first and third inflexion points. All other elasticas do not have conjugate points. As a result, the problem of stability of Euler elasticas is solved.


49J15 Existence theories for optimal control problems involving ordinary differential equations
49Q10 Optimization of shapes other than minimal surfaces
93C10 Nonlinear systems in control theory
74B20 Nonlinear elasticity
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65D07 Numerical computation using splines
74G60 Bifurcation and buckling
74G65 Energy minimization in equilibrium problems in solid mechanics


Full Text: DOI


[1] A. A. Agrachev, Geometry of optimal control problems and Hamiltonian systems. Lect. Notes Math. CIME 1932 Springer-Verlag (2008), pp. 1–59. · Zbl 1170.49035
[2] A. A. Agrachev and Yu. L. Sachkov, Geometric control theory. Fizmatlit, Moscow (2004); English transl.: Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004).
[3] V. I. Arnold, On a characteristic class entering quantization conditions. Funct. Anal. Appl. 1 (1967), No. 1, 1–14. · Zbl 0175.20303 · doi:10.1007/BF01075861
[4] V. I. Arnold and A. B. Givental, Symplectic geometry. Encycl. Math. Sci. 4 Springer-Verlag (1998), pp. 1–136.
[5] M. Born, Stabilität der elastischen Linie in Ebene und Raum. Preisschrift und Dissertation, Dieterichsche Universitäts-Buchdruckerei Göttingen (1906). Reprinted in: Ausgewählte Abhandlungen, Vol. 1, Vanderhoeck & Ruppert, Göttingen (1963), pp. 5–101.
[6] R. Brockett and L. Dai, Non-holonomic kinematics and the role of elliptic functions in constructive controllability. In: Nonholonomic Motion Planning (Z. Li and J. Canny, Eds.), Kluwer, Boston (1993), pp. 1–21. · Zbl 0791.70009
[7] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti. Lausanne, Geneva (1744). · Zbl 0788.01072
[8] D. F. Lawden, Elliptic functions and applications. Springer-Verlag (1989). · Zbl 0689.33001
[9] A. E. H. Love, A treatise on the mathematical theory of elasticity. Dover, New York (1927). · JFM 53.0752.01
[10] Yu. L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sb. 197 (2006), No. 6, 111–160. · Zbl 1148.53022
[11] —-, Maxwell strata in the Euler elastic problem. J. Dynam. Control Systems 14 (2008), No. 2, 169–234; available at arXiv:0705.0614 [math.OC], 3 May 2007. · Zbl 1203.49004 · doi:10.1007/s10883-008-9039-7
[12] —-, Exponential mapping in Euler’s elastic problem. In preparation. · Zbl 1309.49005
[13] A. V. Sarychev, The index of second variation of a control system. Mat. Sb. 113 (1980), 464–486.
[14] E. T. Whittaker and G. N. Watson, A course of modern analysis. Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[15] S. Wolfram, Mathematica: A system for doing mathematics by computer. Addison-Wesley, Reading (1991). · Zbl 0671.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.