×

On the topological derivative due to kink of a crack with non-penetration. Anti-plane model. (English) Zbl 1203.49035

Summary: A topological derivative is defined, which is caused by kinking of a crack, thus, representing the topological change. Using variational methods, the anti-plane model of a solid subject to a non-penetration condition imposed at the kinked crack is considered. The objective function of the potential energy is expanded with respect to the diminishing branch of the incipient crack. The respective sensitivity analysis is provided by a Saint-Venant principle and a local decomposition of the solution of the variational problem in the Fourier series.

MSC:

49K40 Sensitivity, stability, well-posedness
35J20 Variational methods for second-order elliptic equations
49Q12 Sensitivity analysis for optimization problems on manifolds
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368
[2] Amestoy, M.; Leblond, J.-B., Crack paths in plane situations. II: Detailed form of the expansion of the stress intensity factors, Int. J. Solids Struct., 29, 465-501 (1992) · Zbl 0755.73072
[3] Amstutz, S.; Horchani, I.; Masmoudi, M., Crack detection by the topological gradient method, Control Cybernet., 34, 81-101 (2005) · Zbl 1167.74437
[4] Argatov, I. I.; Kovtunenko, V. A., A kinking crack: generalization of the concept of the topological derivative, Bull. Australian Inst. High Energetic Mater., 1, 124-130 (2010)
[5] Argatov, I. I.; Nazarov, S. A., Energy release caused by the kinking of a crack in a plane anisotropic solid, J. Appl. Math. Mech., 66, 491-503 (2002) · Zbl 1066.74578
[6] Barbarosie, C.; Toader, A.-M., Saint-Venant’s principle and its connections to shape and topology optimization, Z. Angew. Math. Mech., 88, 1, 23-32 (2008) · Zbl 1131.74016
[7] Bellis, C.; Bonnet, M., Crack identification by 3D time-domain elastic or acoustic topological sensitivity, C. R. Mecanique, 337, 124-130 (2009)
[8] Berdichevskii, V. L., On the proof of the Saint-Venant principle for bodies of arbitrary shape, J. Appl. Math. Mech., 38, 799-813 (1974) · Zbl 0349.73009
[9] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[10] Céa, J.; Garreau, S.; Guillaume, P.; Masmoudi, M., The shape and topological optimizations connection, Comput. Meth. Appl. Mech. Engrg., 188, 713-726 (2000) · Zbl 0972.74057
[11] Chambolle, A.; Francfort, G. A.; Marigo, J.-J., When and how do cracks propagate?, J. Mech. Phys. Solids, 57, 9, 1614-1622 (2009) · Zbl 1371.74016
[12] Cherepanov, G. P., Mechanics of Brittle Fracture (1979), McGraw-Hill: McGraw-Hill New York, 939 pp · Zbl 0442.73100
[13] Cotterell, B.; Rice, J. R., Slightly curved or kinked cracks, Int. J. Fract. 16, 155-169 (1980)
[14] Eschenauer, H. A.; Kobelev, V. V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. Multidiscip. Optim., 8, 42-51 (1994)
[15] Gol’dstein, R. V.; Salganik, R. L., Brittle fracture of solids with arbitrary cracks, Int. J. Fract., 10, 507-523 (1974)
[16] Grisvard, P., Singularities in Boundary Value Problems (1992), Masson/Springer: Masson/Springer Paris/Berlin, 198 pp · Zbl 0766.35001
[17] Hasebe, N.; Keer, L. M., Branch cracking and debonding at an end of a rigid stiffener under anti-plane shear stress, Int. J. Fract., 148, 4, 303-313 (2007) · Zbl 1264.74208
[18] Haslinger, J.; Kozubek, T.; Kunisch, K.; Peichl, G., Shape differentiability of the solution to a fictitious domain formulation, Adv. Math. Sci. Appl., 16, 95-109 (2006) · Zbl 1109.49042
[19] Hintermüller, M.; Kovtunenko, V. A.; Kunisch, K., An optimization approach for the delamination of a composite material with non-penetration, (Glowinski, R.; Zolesio, J.-P., Free Moving Boundaries. Free Moving Boundaries, Lecture Notes Pure Appl. Math., vol. 252 (2007), Chapman & Hall/CRC), 331-348 · Zbl 1403.74037
[20] Il’in, A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (1992), AMS: AMS Providence, 281 pp · Zbl 0754.34002
[21] Khludnev, A. M.; Kovtunenko, V. A., Analysis of Cracks in Solids (2000), WIT-Press: WIT-Press Southampton, Boston, 408 pp
[22] Khludnev, A. M.; Kovtunenko, V. A.; Tani, A., Evolution of a crack with kink and non-penetration, J. Math. Soc. Japan, 60, 4, 1219-1253 (2008) · Zbl 1153.49040
[23] Khludnev, A. M.; Kozlov, V. A., Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions, Z. Angew. Math. Phys., 59, 2, 264-280 (2008) · Zbl 1138.74043
[24] Khludnev, A. M.; Leontiev, A.; Herskovits, J., Nonsmooth domain optimization for elliptic equations with unilateral conditions, J. Math. Pures Appl. (9), 82, 197-212 (2003) · Zbl 1112.49006
[25] Khludnev, A. M.; Ohtsuka, K.; Sokolowski, J., On derivative of energy functional for elastic bodies with cracks and unilateral conditions, Quart. Appl. Math., 60, 1, 99-109 (2002) · Zbl 1075.74040
[26] Khludnev, A. M.; Sokolowski, J., The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains, European J. Appl. Math., 10, 4, 379-394 (1999) · Zbl 0945.74058
[27] Klein, R.; Sanchez Palencia, E.; Sokolowski, J.; Wagner, B., Report 28/2006: Applications of Asymptotic Analysis, June 18th-June 24th, 2006. Report 28/2006: Applications of Asymptotic Analysis, June 18th-June 24th, 2006, Oberwolfach Rep., 3, 2, 1663-1730 (2006) · Zbl 1109.34321
[28] Kogut, P.; Leugering, G., Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization, Asymptotic Anal., 26, 1, 37-72 (2001) · Zbl 0994.49011
[29] Kondratiev, V. A.; Oleinik, O. A., On Korn’s inequalities, C. R. Acad. Sci. Paris Sér. I Math., 308, 483-487 (1989) · Zbl 0698.35067
[30] Kovtunenko, V. A., Regular perturbation methods for a region with a crack, Appl. Mech. Tech. Phys., 43, 5, 748-762 (2002) · Zbl 1002.74086
[31] Kovtunenko, V. A., Invariant energy integrals for the non-linear crack problem with possible contact of the crack surfaces, J. Appl. Math. Mech., 67, 99-110 (2003) · Zbl 1067.74562
[32] Kovtunenko, V. A., Primal-dual methods of shape sensitivity analysis for curvilinear cracks with non-penetration, IMA J. Appl. Math., 71, 635-657 (2006) · Zbl 1112.74047
[33] Kozlov, V. A.; Maz’ya, V. G.; Rossmann, J., Elliptic Boundary Value Problems in Domains with Point Singularities (1997), AMS: AMS Providence, RI, 414 pp · Zbl 0947.35004
[34] Lazarus, V.; Buchholz, F.-G.; Fulland, M.; Wiebesiek, J., Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments, Int. J. Fract., 153, 141-151 (2008)
[35] Lazarus, V.; Leblond, J.-B., Crack paths under mixed mode (I+II) or (I+II+III) loadings, C. R. Acad. Sci. Paris, Sér. II, Fasc. b, Méc. Phys. Astron., 326, 3, 171-177 (1998) · Zbl 1012.74501
[36] Leblond, J.-B.; Frelat, J., Crack kinking from an interface crack with initial contact between the crack lips, Eur. J. Mech. A Solids, 20, 6, 937-951 (2001) · Zbl 1054.74040
[37] Maz’ya, V.; Nazarov, S.; Plamenevskii, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (2000), Birkhäuser: Birkhäuser Basel, vol. I, 435 pp.; vol. II, 323 pp · Zbl 1127.35301
[38] Mishuris, G.; Kuhn, G., Comparative study of an interface crack for different wedge-interface models, Arch. Appl. Mech., 71, 11, 764-780 (2001) · Zbl 1016.74059
[39] Morozov, N. F.; Petrov, Yu. V., Dynamics of Fracture (2000), Springer: Springer Berlin, 98 pp · Zbl 0956.74002
[40] Norato, J. A.; Bendsoe, M. P.; Haber, R. B.; Tortorelli, D. A., A topological derivative method for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 375-386 (2007) · Zbl 1245.74074
[41] Ohtsuka, K., Comparison of criteria on the direction of crack extension, J. Comput. Appl. Math., 149, 1, 335-339 (2002) · Zbl 1045.74044
[42] Oleaga, G. E., On the path of a quasi-static crack in mode III, J. Elasticity, 76, 2, 163-189 (2004) · Zbl 1060.74059
[43] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J. Control Optim., 37, 4, 1251-1272 (1999) · Zbl 0940.49026
[44] Ventura, G.; Xu, J. X.; Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG, Int. J. Numer. Meth. Engng., 54, 923-944 (2002) · Zbl 1034.74053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.