×

zbMATH — the first resource for mathematics

Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. (English) Zbl 1203.49042
Summary: In this paper, we investigate the discretization of general convex optimal control problem using the mixed finite element method. The state and co-state are discretized by the lowest order Raviart-Thomas element and the control is approximated by piecewise constant functions. We derive error estimates for both the control and the state approximation. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problem. Finally, some numerical examples are given to demonstrate the practical side of the theoretical results about superconvergence.

MSC:
49M25 Discrete approximations in optimal control
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984) · Zbl 0567.49015 · doi:10.1007/BF01449031
[2] Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989) · Zbl 0688.49032 · doi:10.1137/0327038
[3] Arada, N., Casas, E., Troltzsch, F.: Error estimates for a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002) · Zbl 1033.65044 · doi:10.1023/A:1020576801966
[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991). MR 92d:65187 · Zbl 0788.73002
[5] Chang, Y., Yang, D.: Superconvergence analysis of finite element methods for optimal control problems of the stationary Benard type. J. Comput. Math. 26, 660–676 (2008) · Zbl 1174.49001
[6] Chen, Y.: Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Intl. J. Numer. Methods Eng. 75(8), 881–898 (2008) · Zbl 1195.49038 · doi:10.1002/nme.2272
[7] Chen, Y.: Superconvergence of optimal control problems by rectangular mixed finite element methods. Math. Comput. 77, 1269–1291 (2008) · Zbl 1193.49029 · doi:10.1090/S0025-5718-08-02104-2
[8] Chen, Y., Huang, Y., Yi, N.: A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations. Sci. China Ser. A Math. 51(8), 1376–1390 (2008) · Zbl 1154.49006 · doi:10.1007/s11425-008-0097-9
[9] Chen, Y., Yi, N., Liu, W.B.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008) · Zbl 1175.49003 · doi:10.1137/070679703
[10] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[11] Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985) · Zbl 0624.65109 · doi:10.1090/S0025-5718-1985-0771029-9
[12] Ewing, R.E., Liu, M.M., Wang, J.: Superconvergence of mixed finite element approximations over quadrilaterals. SIAM J. Numer. Anal. 36, 772–787 (1999) · Zbl 0926.65107 · doi:10.1137/S0036142997322801
[13] Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973) · Zbl 0268.49036 · doi:10.1016/0022-247X(73)90022-X
[14] Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974) · Zbl 0297.65061 · doi:10.1090/S0025-5718-1974-0391502-8
[15] French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–315 (1991) · Zbl 0747.65047 · doi:10.1080/01630569108816430
[16] Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer. 13, 313–328 (1979) · Zbl 0426.65067
[17] Gunzburger, M.D., Hou, L.S.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34, 1001–1043 (1996) · Zbl 0849.49005 · doi:10.1137/S0363012994262361
[18] Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1989) · Zbl 0845.73001
[19] Hou, L., Turner, J.C.: Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71, 289–315 (1995) · Zbl 0827.49002 · doi:10.1007/s002110050146
[20] Knowles, G.: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982) · Zbl 0481.49026 · doi:10.1137/0320032
[21] Kwon, Y., Milner, F.A.: L error estimates for mixed methods for semilinear second-order elliptic equations. SIAM J. Numer. Anal. 25, 46–53 (1988) · Zbl 0643.65057 · doi:10.1137/0725005
[22] Lasiecka, I.: Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22, 477–500 (1984) · Zbl 0549.49024 · doi:10.1137/0322029
[23] Li, R., Liu, W.B.: http://circus.math.pku.edu.cn/AFEPack
[24] Li, R., Ma, H., Liu, W.B., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002) · Zbl 1034.49031 · doi:10.1137/S0363012901389342
[25] Lin, Q., Yan, N.: Structure and Analysis for Efficient Finite Element Methods (in Chinese), Hebei University Press (1996)
[26] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001
[27] Liu, W.B., Gong, W., Yan, N.: A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27, 97–114 (2009) · Zbl 1199.49067
[28] Liu, W.B., Tiba, D.: Error estimates in the approximation of optimization problems. Numer. Funct. Anal. Optim. 22, 953–972 (2001) · Zbl 1017.49007 · doi:10.1081/NFA-100108317
[29] Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal boundary control. SIAM J. Numer. Anal. 39, 73–99 (2001) · Zbl 0988.49018 · doi:10.1137/S0036142999352187
[30] Liu, W.B., Yan, N.N.: A posteriori error estimates for control problems governed by Stokes’ equations. SIAM J. Numer. Anal. 40, 1805–1869 (2003) · Zbl 1028.49025
[31] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004) · Zbl 1071.49023 · doi:10.1137/S0363012903431608
[32] Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York (1994)
[33] Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977) · Zbl 0362.65089
[34] Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Mathematics, vol. 1459. Springer, Berlin (1990) · Zbl 0732.49002
[35] Tiba, D., Troltzsch, F.: Error estimates for the discretization of state constrained convex control problems. Numer. Funct. Anal. Optim. 17, 1005–1028 (1996) · Zbl 0899.49013 · doi:10.1080/01630569608816739
[36] Troltzsch, F.: Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems–strong convergence of optimal control. Appl. Math. Optim. 29, 309–329 (1994) · Zbl 0802.49017 · doi:10.1007/BF01189480
[37] Xing, X., Chen, Y.: Error estimates of mixed methods for optimal control problems governed by parabolic equations. Intl. J. Numer. Methods Eng. 75(6), 735–754 (2008) · Zbl 1195.65085 · doi:10.1002/nme.2289
[38] Yan, N.: Superconvergence and recovery type a posteriori error estimate for constrained convex optimal control problems. In: Lu, Y., Sun, W., Tang, T. (eds.) Advances in Scientific Computing and Applications, pp. 408–419. Science Press, Beijing/New York (2004)
[39] Yang, D., Chang, Y., Liu, W.B.: A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J. Comput. Math. 26, 471–487 (2008) · Zbl 1174.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.