×

Composite algorithms for minimization over the solutions of equilibrium problems and fixed point problems. (English) Zbl 1203.49048

Summary: The purpose of this paper is to solve the minimization problem of finding \(x^*\) such that \(x^*=\arg \min_{x\in \Gamma }\| x\|^2\), where \(\Gamma \) stands for the intersection set of the solution set of the equilibrium problem and the fixed points set of a nonexpansive mapping. We first present two new composite algorithms (one implicit and one explicit). Further, we prove that the proposed composite algorithms converge strongly to \(x^*\).

MSC:

49M30 Other numerical methods in calculus of variations (MSC2010)

References:

[1] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994. · Zbl 0888.49007
[2] S. Takahashi and W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis, vol. 69, no. 3, pp. 1025-1033, 2008. · Zbl 1142.47350 · doi:10.1016/j.na.2008.02.042
[3] A. Moudafi and M. Théra, “Proximal and dynamical approaches to equilibrium problems,” in Ill-Posed Variational Problems and Regularization Techniques (Trier, 1998), vol. 477 of Lecture Notes in Economics and Mathematical Systems, pp. 187-201, Springer, Berlin, Germany, 1999. · Zbl 0944.65080
[4] A. Moudafi, “Weak convergence theorems for nonexpansive mappings and equilibrium problems,” Journal of Nonlinear and Convex Analysis, vol. 9, no. 1, pp. 37-43, 2008. · Zbl 1167.47049
[5] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005. · Zbl 1109.90079
[6] S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 506-515, 2007. · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[7] L.-C. Ceng and J.-C. Yao, “A hybrid iterative scheme for mixed equilibrium problems and fixed point problems,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 186-201, 2008. · Zbl 1143.65049 · doi:10.1016/j.cam.2007.02.022
[8] P.-E. Maingé and A. Moudafi, “Coupling viscosity methods with the extragradient algorithm for solving equilibrium problems,” Journal of Nonlinear and Convex Analysis, vol. 9, no. 2, pp. 283-294, 2008. · Zbl 1189.90120
[9] Y. Yao, Y.-C. Liou, C. Lee, and M.-M. Wong, “Convergence theorems for equilibrium problems and fixed point problems,” Fixed Point Theory, vol. 10, no. 2, pp. 347-363, 2009. · Zbl 1171.90542 · doi:10.1016/j.mcm.2008.11.014
[10] M. A. Noor, Y. Yao, R. Chen, and Y.-C. Liou, “An iterative method for fixed point problems and variational inequality problems,” Mathematical Communications, vol. 12, no. 1, pp. 121-132, 2007. · Zbl 1149.49013
[11] H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Review, vol. 38, no. 3, pp. 367-426, 1996. · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[12] P. L. Combettes, “Strong convergence of block-iterative outer approximation methods for convex optimization,” SIAM Journal on Control and Optimization, vol. 38, no. 2, pp. 538-565, 2000. · Zbl 1032.90023 · doi:10.1137/S036301299732626X
[13] P. L. Combettes and J.-C. Pesquet, “Proximal thresholding algorithm for minimization over orthonormal bases,” SIAM Journal on Optimization, vol. 18, no. 4, pp. 1351-1376, 2007. · Zbl 1167.90011 · doi:10.1137/060669498
[14] L. C. Ceng, S. Schaible, and J. C. Yao, “Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings,” Journal of Optimization Theory and Applications, vol. 139, no. 2, pp. 403-418, 2008. · Zbl 1163.47051 · doi:10.1007/s10957-008-9361-y
[15] L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 967-974, 2009. · Zbl 1167.47307 · doi:10.1016/j.cam.2008.03.032
[16] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and monotone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417-428, 2003. · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[17] N. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings,” Journal of Optimization Theory and Applications, vol. 128, no. 1, pp. 191-201, 2006. · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[18] Y. Yao, Y.-C. Liou, and J.-C. Yao, “An iterative algorithm for approximating convex minimization problem,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 648-656, 2007. · Zbl 1121.65071 · doi:10.1016/j.amc.2006.10.039
[19] Y. Yao, M. A. Noor, R. Chen, and Y.-C. Liou, “Strong convergence of three-step relaxed hybrid steepest-descent methods for variational inequalities,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 175-183, 2008. · Zbl 1158.65047 · doi:10.1016/j.amc.2007.12.011
[20] Y. Yao and J.-C. Yao, “On modified iterative method for nonexpansive mappings and monotone mappings,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1551-1558, 2007. · Zbl 1121.65064 · doi:10.1016/j.amc.2006.08.062
[21] S. Plubtieng and R. Punpaeng, “A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 548-558, 2008. · Zbl 1154.47053 · doi:10.1016/j.amc.2007.07.075
[22] H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and Applications, vol. 116, no. 3, pp. 659-678, 2003. · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[23] J.-W. Peng and J.-C. Yao, “A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems,” Taiwanese Journal of Mathematics, vol. 12, no. 6, pp. 1401-1432, 2008. · Zbl 1185.47079
[24] V. Colao, G. L. Acedo, and G. Marino, “An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings,” Nonlinear Analysis, vol. 71, no. 7-8, pp. 2708-2715, 2009. · Zbl 1175.47058 · doi:10.1016/j.na.2009.01.115
[25] J. S. Jung, “Strong convergence of composite iterative methods for equilibrium problems and fixed point problems,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 498-505, 2009. · Zbl 1175.65068 · doi:10.1016/j.amc.2009.03.048
[26] S.-S. Chang, H. W. Joseph Lee, and C. K. Chan, “A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization,” Nonlinear Analysis, vol. 70, no. 9, pp. 3307-3319, 2009. · Zbl 1198.47082 · doi:10.1016/j.na.2008.04.035
[27] X. Qin, Y. J. Cho, and S. M. Kang, “Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces,” Journal of Computational and Applied Mathematics, vol. 225, no. 1, pp. 20-30, 2009. · Zbl 1165.65027 · doi:10.1016/j.cam.2008.06.011
[28] V. Colao, G. Marino, and H.-K. Xu, “An iterative method for finding common solutions of equilibrium and fixed point problems,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 340-352, 2008. · Zbl 1141.47040 · doi:10.1016/j.jmaa.2008.02.041
[29] Y. Yao, Y. C. Liou, and G. Marino, “Strong convergence of two iterative algorithms for nonexpansive mappings in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 279058, 7 pages, 2009. · Zbl 1186.47080 · doi:10.1155/2009/279058
[30] Y. Yao, Y.-C. Liou, and Y.-J. Wu, “An extragradient method for mixed equilibrium problems and fixed point problems,” Fixed Point Theory and Applications, vol. 2009, Article ID 632819, 15 pages, 2009. · Zbl 1203.47086 · doi:10.1155/2009/632819
[31] Y. Yao, Y.-C. Liou, and J.-C. Yao, “A new hybrid iterative algorithm for fixed-point problems, variational inequality problems, and mixed equilibrium problems,” Fixed Point Theory and Applications, vol. 2008, Article ID 417089, 15 pages, 2008. · Zbl 1203.47087 · doi:10.1155/2008/417089
[32] Y. Yao, Y.-C. Liou, and J.-C. Yao, “Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2007, Article ID 64363, 12 pages, 2007. · Zbl 1153.54024 · doi:10.1155/2007/64363
[33] Y. Yao, Y.-C. Liou, and J.-C. Yao, “An extragradient method for fixed point problems and variational inequality problems,” Journal of Inequalities and Applications, vol. 2007, Article ID 38752, 12 pages, 2007. · Zbl 1137.47057 · doi:10.1155/2007/38752
[34] S. Wang, G. Marino, and F. Wang, “Strong convergence theorems for a generalized equilibrium problem with a relaxed monotone mapping and a countable family of nonexpansive mappings in a Hilbert space,” Fixed Point Theory and Applications, vol. 2010, Article ID 230304, 22 pages, 2010. · Zbl 1204.47088 · doi:10.1155/2010/230304
[35] F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem,” Fixed Point Theory and Applications, vol. 2010, Article ID 383740, 19 pages, 2010. · Zbl 1203.47043 · doi:10.1155/2010/383740
[36] F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “On a two-step algorithm for hierarchical fixed point problems and variational inequalities,” Journal of Inequalities and Applications, vol. 2009, Article ID 208692, 13 pages, 2009. · Zbl 1180.47040 · doi:10.1155/2009/208692
[37] J. W. Peng, S. Y. Wu, and J. C. Yao, “A new iterative method for finding common solutions of a system of equilibrium problems, fixed-point problems, and variational inequalities,” Abstract and Applied Analysis, vol. 2010, Article ID 428293, 27 pages, 2010. · Zbl 1206.47080 · doi:10.1155/2010/428293
[38] W. Chantarangsi, C. Jaiboon, and P. Kumam, “A viscosity hybrid steepest descent method for generalized mixed equilibrium problems and variational inequalities for relaxed cocoercive mapping in Hilbert spaces,” Abstract and Applied Analysis, vol. 2010, Article ID 390972, 39 pages, 2010. · Zbl 1206.47067 · doi:10.1155/2010/390972
[39] S. Saewan, P. Kumam, and K. Wattanawitoon, “Convergence theorem based on a new hybrid projection method for finding a common solution of generalized equilibrium and variational inequality problems in Banach spaces,” Abstract and Applied Analysis, vol. 2010, Article ID 734126, 25 pages, 2010. · Zbl 1195.47044 · doi:10.1155/2010/734126
[40] C. Klin-eam, S. Suantai, and W. Takahashi, “Strong convergence of generalized projection algorithms for nonlinear operators,” Abstract and Applied Analysis, vol. 2009, Article ID 649831, 18 pages, 2009. · Zbl 1195.47043 · doi:10.1155/2009/649831
[41] L.-C. Ceng and J.-C. Yao, “A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem,” Nonlinear Analysis, vol. 72, no. 3-4, pp. 1922-1937, 2010. · Zbl 1179.49003 · doi:10.1016/j.na.2009.09.033
[42] J.-W. Peng and J.-C. Yao, “Ishikawa iterative algorithms for a generalized equilibrium problem and fixed point problems of a pseudo-contraction mapping,” Journal of Global Optimization, vol. 46, no. 3, pp. 331-345, 2010. · Zbl 1208.90171 · doi:10.1007/s10898-009-9428-9
[43] L.-C. Zeng, Q. H. Ansari, D. S. Shyu, and J.-C. Yao, “Strong and weak convergence theorems for common solutions of generalized equilibrium problems and zeros of maximal monotone operators,” Fixed Point Theory and Applications, vol. 2010, Article ID 590278, 33 pages, 2010. · Zbl 1207.47077 · doi:10.1155/2010/590278
[44] L.-C. Ceng, S. Kum, and J.-C. Yao, “Algorithm for solving a generalized mixed equilibrium problem with perturbation in a Banach space,” Fixed Point Theory and Applications, vol. 2010, Article ID 794503, 22 pages, 2010. · Zbl 1213.49033 · doi:10.1155/2010/794503
[45] S.-S. Zhang, H.-W. Lee, and C.-K. Chan, “Quadratic minimization for equilibrium problem variational inclusion and fixed point problem,” Applied Mathematics and Mechanics, vol. 31, no. 7, pp. 917-928, 2010. · Zbl 1205.49043 · doi:10.1007/s10483-010-1326-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.