Synchronization of coupled stochastic systems with multiplicative noise. (English) Zbl 1203.60077

From the authors’: We consider the synchronization of solutions to coupled systems of the conjugate random ordinary differential equations (RODEs) for the N-Stratronovich stochastic ordinary differential equations (SODEs) with linear multiplicative noise (\(N \in \mathbb N\)). We consider the synchronization between two solutions and among different components of solutions under one-sided dissipative Lipschitz conditions. We first show that the random dynamical system generated by the solution of the coupled RODEs has a singleton sets random attractor which implies the synchronization of any two solutions. Moreover, the singleton sets random attractor determines a stationary stochastic solution of the equivalently coupled SODEs. Then we show that any solution of the RODEs converge to a solution of the averaged RODE within any finite time interval as the coupled coefficient tends to infinity. Our results generalize the work of two Stratronovich SODEs in [Stoch. Dyn. 8, No. 1, 139–154 (2008; Zbl 1149.60036)].


60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
37H10 Generation, random and stochastic difference and differential equations


Zbl 1149.60036
Full Text: DOI arXiv


[1] DOI: 10.1103/RevModPhys.77.137 · doi:10.1103/RevModPhys.77.137
[2] DOI: 10.1016/S0167-2789(96)00276-X · Zbl 1194.34056 · doi:10.1016/S0167-2789(96)00276-X
[3] DOI: 10.1080/02681119808806263 · Zbl 1067.34052 · doi:10.1080/02681119808806263
[4] Afraimovich V. S., Izv. Vys. Uch. Zav., Radiofizika 29 pp 1050–
[5] DOI: 10.1007/978-3-662-12878-7 · doi:10.1007/978-3-662-12878-7
[6] Blekhman I. I., Synchronization in Science and Technology (1988)
[7] DOI: 10.1098/rspa.2005.1484 · Zbl 1206.60054 · doi:10.1098/rspa.2005.1484
[8] DOI: 10.1142/S0219493708002184 · Zbl 1149.60036 · doi:10.1142/S0219493708002184
[9] DOI: 10.1007/s00245-004-0802-1 · Zbl 1066.60058 · doi:10.1007/s00245-004-0802-1
[10] DOI: 10.1006/jmaa.1997.5774 · Zbl 0907.34039 · doi:10.1006/jmaa.1997.5774
[11] Carrol T. L., Phys. Rev. Lett. 64 pp 821–
[12] DOI: 10.1016/S0362-546X(99)00458-7 · Zbl 1009.34036 · doi:10.1016/S0362-546X(99)00458-7
[13] DOI: 10.1007/b83277 · Zbl 1023.37030 · doi:10.1007/b83277
[14] DOI: 10.1038/35065745 · doi:10.1038/35065745
[15] Kloeden P. E., Elect. J. Diff. Eqns. 39 pp 1–
[16] DOI: 10.1017/CBO9780511755743 · doi:10.1017/CBO9780511755743
[17] DOI: 10.1023/A:1016673307045 · Zbl 1004.37034 · doi:10.1023/A:1016673307045
[18] DOI: 10.1080/00036819608840483 · Zbl 0890.34052 · doi:10.1080/00036819608840483
[19] Strogatz S., Sync: The Emerging Science of Spontaneous Order (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.