zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified Jarratt method for computing multiple roots. (English) Zbl 1203.65084
Construction of iterative methods of optimal order for multiple roots is a difficult problem in numerical analysis. A fourth order method for computing multiple roots of nonlinear equations $(f(x)=0)$ is presented. The method is based on the Jarratt scheme for simple roots. The method is optimal, since it requires three evaluations per step. The efficacy is tested on the a number of relevant numerical problems.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, J. assoc. Comput. Mach 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[2] Petković, M. S.: On a class of multipoint root-finding methods of high computational efficiency, SIAM J. Numer. anal. 47, 4402-4414 (2010) · Zbl 1209.65053 · doi:10.1137/090758763
[3] Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[4] Jarratt, P.: Some efficient fourth order multipoint methods for solving equations, Bit 9, 119-124 (1969) · Zbl 0188.22101 · doi:10.1007/BF01933248
[5] Wolfram, S.: The Mathematica book, (2003)
[6] Gautschi, W.: Numerical analysis: an introduction, (1997) · Zbl 0877.65001
[7] Li, S.; Liao, X.; Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations, Appl. math. Comput. 215, 1288-1292 (2009) · Zbl 1175.65054 · doi:10.1016/j.amc.2009.06.065