×

Differential evolution algorithm combined with chaotic pattern search. (English) Zbl 1203.65090

Summary: A differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of the simple DE algorithm. The pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including the morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space. The comparisons with the standard particle swarm optimization, differential evolution and other hybrid algorithms verify that the DE-CPS algorithm has great superiority.

MSC:

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
90C15 Stochastic programming
PDF BibTeX XML Cite
Full Text: EuDML Link

References:

[1] Audet, C., Dennis, J. E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11 (2001), 3, 573-594. · Zbl 1035.90048
[2] Cai, J. J., Ma, X. Q., Li, X.: Chaotic ant swarm optimization to economic dispatch. Electron. Power Systems Research 77 (2007), 10, 1373-1380.
[3] Fan, H. Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. J. Global Optim. 27 (2003), 1, 105-129. · Zbl 1142.90509
[4] HART, W. E.: Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization. IEEE Trans. Evol. Comput. 5 (2001), 4, 388-397. · Zbl 05451979
[5] He, Y. Y., Zhou, J. Z., Li, C. S.: A precise chaotic particle swarm optimization algorithm based on improved tent map. ICNC 7 (2008), 569-573.
[6] He, Y. Y., Zhou, J. Z., Xiang, X. Q.: Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42 (2009), 5, 3169-3176. · Zbl 1198.90184
[7] He, Y. Y., Zhou, J. Z., Qin, H.: Flood disaster classification based on fuzzy clustering iterative model and modified differential evolution algorithm. FSKD 3 (2009), 85-89.
[8] Ji, M. J., Tang, H. W.: Application of chaos in simulated annealing. optimization. Chaos Solitons Fractals 21 (2004), 933-941. · Zbl 1045.37054
[9] Kaelo, P., Ali, M. M.: A numerical study of some modified differential evolution algorithms. European J. Oper. Res. 169 (2006), 1176-1184. · Zbl 1079.90106
[10] Kennedy, J., Eberhan, R. J.: Particle swarm optimization. IEEE Internat. Conf on Neural Networks 1995, Vol. 4, pp. 1942-1948.
[11] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley 1995. · Zbl 0888.90135
[12] Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997), 341-359. · Zbl 0888.90135
[13] Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. University of California, Berkeley 2006. · Zbl 0888.90135
[14] Tavazoei, M. S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 187 (2007), 1076-1085. · Zbl 1114.65335
[15] Xiang, T., Liao, X. F., Wong, K. W.: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl. Math. Comput. 190 (2007), 1637-1645. · Zbl 1122.65363
[16] Yang, D. X., Li, G., Cheng, G. D.: On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34 (2007), 1366-1375.
[17] Yuan, X. H., Yuan, Y. B., Zhang, Y. C.: A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math. Comput. Simul. 59 (2002), 4, 319-327. · Zbl 1030.90040
[18] Yuan, X. F., Wang, Y. N., Wu, L. H.: Pattern search algorithm using chaos and its application. J. of Hunan University (Natural Sciences) 34 (2007), 9, 30-33. · Zbl 1150.68455
[19] Zhang, L., Zhang, C. J.: Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers. Kybernetika 44 (2008), 1, 35-42. · Zbl 1145.93361
[20] Zhu, Z. L., Li, S. P., Yu, H.: A new approach to generalized chaos synchronization based on the stability of the error System. Kybernetika 44 (2008), 4, 492-500. · Zbl 1172.93015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.