Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. (English) Zbl 1203.65174

Authors’ abstract: We prove the existence of weak solutions to the harmonic map heat flow, and wave maps into spheres of nonconstant radii. Weak solutions are constructed as proper limits of iterates from a fully practical scheme based on lowest order conforming finite elements, where discrete Lagrange multipliers are employed to exactly meet the sphere constraint at mesh-points. Computational studies are included to motivate interesting dynamics in two and three spatial dimensions.


65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
35Q35 PDEs in connection with fluid mechanics


Full Text: DOI


[1] Alouges F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34, 1708–1726 (1997) · Zbl 0886.35010
[2] Alouges F., Jaisson P.: Convergence of a finite elements discretization for the Landau Lifshitz equations. Math. Models Methods Appl. Sci. 16, 299–316 (2006) · Zbl 1102.35333
[3] Baňas, Ľ.: http://www.ma.hw.ac.uk/\(\sim\)lubomir/research.html
[4] Baňas Ľ., Prohl A., Slodička M.: Modeling of thermally assisted magnetodynamics. SIAM J. Numer. Anal. 47, 551–574 (2008) · Zbl 1192.74102
[5] Baňas Ľ., Bartels S., Prohl A.: A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal. 46, 1399–1422 (2008) · Zbl 1173.35321
[6] Bartels S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43, 220–238 (2005) · Zbl 1090.35014
[7] Bartels S., Prohl A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comp. 76, 1847–1859 (2007) · Zbl 1124.65089
[8] Bartels S., Prohl A.: Convergence of an implicit finite element method for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 44, 1405–1419 (2006) · Zbl 1124.65088
[9] Bartels S., Prohl A.: Stable discretization of scalar and constrained vectorial Perona-Malik equation. Interfaces Free Boundaries 9, 431–453 (2007) · Zbl 1147.35011
[10] Barrett J.W., Bartels S., Feng X., Prohl A.: A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45, 905–927 (2007) · Zbl 1155.35055
[11] Bartels S., Feng X., Prohl A.: Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46, 61–87 (2008) · Zbl 1160.65050
[12] Bartels S., Lubich C., Prohl A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp. 78, 1269–1292 (2009) · Zbl 1198.65178
[13] Bizoń P., Chmaj T., Tabor Z.: Dispersion and collapse of wave maps. Nonlinearity 13, 1411–1423 (2000) · Zbl 0963.35121
[14] Bizoń P., Chmaj T., Tabor Z.: Formation of singularities for equivariant (2 + 1)-dimensional wave maps into the 2-sphere. Nonlinearity 14, 1041–1053 (2001) · Zbl 0988.35010
[15] Chang K.C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–511 (1992) · Zbl 0765.53026
[16] Chen Y.M., Struwe M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989) · Zbl 0652.58024
[17] Chen Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989) · Zbl 0685.58015
[18] Coron J.-M., Ghidaglia J.-M.: Explosion en temps fini pour le flot des applications harmoniques. CR. Acad. Sci. Paris Ser. I 308, 339–344 (1989) · Zbl 0679.58017
[19] Davis T.A., Duff I.S.: An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J. Matrix Anal. Appl. 18, 140–158 (1997) · Zbl 0884.65021
[20] Grotowski, J.F., Shatah, J.: A note on geometric heat flows in critical dimensions. Preprint (2006). http://math.nyu.edu/faculty/shatah/preprints/gs06.pdf
[21] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, New York (2006) · Zbl 1094.65125
[22] Krieger J., Schlag W., Tataru D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171, 543–615 (2008) · Zbl 1139.35021
[23] Kruzik M., Prohl A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48, 439–483 (2006) · Zbl 1126.49040
[24] Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical O(3) {\(\sigma\)}-model. Preprint (arXiv-series) (2006) · Zbl 1213.35392
[25] Schmidt A., Siebert K.G.: ALBERT–software for scientific computations and applications. Acta Math. Univ. Comenian. (N.S.) 70, 105–122 (2000) · Zbl 0993.65134
[26] Shatah J.: Weak solutions and development of singularities in the SU(2) {\(\sigma\)} model. Comm. Pure Appl. Math. 41, 459–469 (1988) · Zbl 0686.35081
[27] Shatah, J., Struwe, M.: Geometric Wave Equations. New York University, Courant Institute of Mathematical Sciences, New York (1998) · Zbl 0993.35001
[28] Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS (1997) · Zbl 0870.35004
[29] Struwe M.: Geometric evolution problems. IAS/Park City Math. Series 2, 259–339 (1996) · Zbl 0847.58012
[30] Struwe M.: On the evolution of harmonic maps of Riemannian surfaces. Math. Helv. 60, 558–581 (1985) · Zbl 0595.58013
[31] Tang B., Sapiro G., Caselles V.: Diffusion of generated data on non-flat manifolds via harmonic maps theory: the direction diffusion case. Int. J. Comput. Vis. 36, 149–161 (2000) · Zbl 02180371
[32] Tang B., Sapiro G., Caselles V.: Color image enhancement via chromaticity diffusion. IEEE Trans. Image Proc. 10, 701–707 (2001) · Zbl 1037.68792
[33] Tataru D.: The wave maps equation. Bull. Am. Math. Soc. 41, 185–204 (2004) · Zbl 1065.35199
[34] Vese L.A., Osher S.J.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40, 2085–2104 (2002) · Zbl 1035.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.