×

Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. (English) Zbl 1203.65182

Summary: The authors and A. Schneebeli [SIAM J. Numer. Anal. 44, No. 6, 2408–2431 (2006; Zbl 1129.65065)] a symmetric interior penalty discontinuous Galerkin (DG) method was presented for the time-dependent wave equation. In particular, optimal a-priori error bounds in the energy norm and the \(L ^{2}\)-norm were derived for the semi-discrete formulation. Here the error analysis is extended to the fully discrete numerical scheme, when a centered second-order finite difference approximation (“leap-frog” scheme) is used for the time discretization. For sufficiently smooth solutions, the maximal error in the \(L ^{2}\)-norm error over a finite time interval converges optimally as \(O(h p+1+\Delta t ^{2})\), where \(p\) denotes the polynomial degree, \(h\) the mesh size, and \(\Delta t\) the time step.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1129.65065

References:

[1] Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006) · Zbl 1102.76032 · doi:10.1007/s10915-005-9044-x
[2] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[3] Baker, G.A.: Error estimates for finite element methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976) · Zbl 0345.65059 · doi:10.1137/0713048
[4] Baker, G.A., Dougalis, V.A., Serbin, S.M.: High order accurate two-step approximations for hyperbolic equations. RAIRO. Modél. Math. Anal. Numér. 13, 201–226 (1979) · Zbl 0411.65057
[5] Bécache, E., Joly, P., Tsogka, C.: An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal. 37, 1053–1084 (2000) · Zbl 0958.65102 · doi:10.1137/S0036142998345499
[6] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam (1978) · Zbl 0383.65058
[7] Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: Barth, T., Deconink, H. (eds.) High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Engrg., vol. 9, pp. 69–224. Springer, Berlin (1999) · Zbl 0937.76049
[8] Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lect. Notes Comput. Sci. Engrg., vol. 11, pp. 3–50. Springer, Berlin (2000) · Zbl 0989.76045
[9] Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989) · Zbl 0662.65083
[10] Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection–dominated problems. J. Sci. Comput. 16, 173–261 (2001) · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[11] Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001) · Zbl 1019.65077 · doi:10.1137/S0036142997329554
[12] Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A-priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Eng. 82, 205–222 (1990) · Zbl 0724.65087 · doi:10.1016/0045-7825(90)90165-I
[13] Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A-priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33, 492–504 (1996) · Zbl 0859.65097 · doi:10.1137/0733026
[14] Diaz, J., Grote, M.J.: Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. (in press) · Zbl 1195.65131
[15] Dupont, T.: L 2-estimates for Galerkin methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973) · doi:10.1137/0710073
[16] Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999) · Zbl 0923.65065 · doi:10.1137/S0036142997329463
[17] French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 66, 491–506 (1996) · Zbl 0846.65048
[18] Gekeler, E.: Linear multi-step methods and Galerkin procedures for initial boundary value problems. SIAM J. Numer. Anal. 13, 536–548 (1976) · Zbl 0335.65042 · doi:10.1137/0713046
[19] Geveci, T.: On the application of mixed finite methods to the wave equation. RAIRO Modél. Math. Anal. Numér. 22, 243–250 (1988) · Zbl 0646.65083
[20] Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006) · Zbl 1129.65065 · doi:10.1137/05063194X
[21] Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Energy norm error estimates. J. Comput. Appl. Math. 204, 375–386 (2007) · Zbl 1136.78014 · doi:10.1016/j.cam.2006.01.044
[22] Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal L 2-norm error estimates. IMA J. Numer. Anal. 28, 440–468 (2008) · Zbl 1145.78006 · doi:10.1093/imanum/drm038
[23] Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids I: Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002) · Zbl 1014.78016 · doi:10.1006/jcph.2002.7118
[24] Houston, P., Jensen, M., Süli, E.: hp-discontinuous Galerkin finite element methods with least-squares stabilization. J. Sci. Comput. 17, 3–25 (2002) · Zbl 1053.76040 · doi:10.1023/A:1015180009979
[25] Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, New York (1987) · Zbl 0634.73056
[26] Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22–23, 443–477 (2005) · Zbl 1082.65099 · doi:10.1007/s10915-004-4132-5
[27] Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems I: Semi-discrete error estimates. Technical Report 01-02, TICAM, UT Austin (2001) · Zbl 1010.65045
[28] Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. In: ICM2002-Beijing Satellite Conference on Scientific Computing. Contemporary Mathematics, vol. 329, pp. 271–282. Am. Math. Soc., Providence (2003) · Zbl 1080.76039
[29] Safjan, A., Oden, J.T.: High-order Taylor-Galerkin and adaptive h methods for second-order hyperbolic systems: Applications to elastodynamics. Comput. Methods Appl. Mech. Eng. 103, 187–230 (1993) · Zbl 0767.73077 · doi:10.1016/0045-7825(93)90046-Z
[30] Shubin, G.R., Bell, J.: A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Comput. 8, 135–151 (1987) · Zbl 0611.76091 · doi:10.1137/0908026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.