Biazar, J.; Ghazvini, H. Exact solutions for non-linear Schrödinger equations by He’s homotopy perturbation method. (English) Zbl 1203.65207 Phys. Lett., A 366, No. 1-2, 79-84 (2007). Summary: An analytical approximation to the solution of Schrödinger equations has been studied. Homotopy perturbation method introduced by He is employed to drive this analytical solution and results will be compared with Adomian decomposition method. We will obtain an efficient recurrence relation for solving these equations. To illustrate the ability and reliability of the method some examples are provided. The results reveal that the method is very effective and simple. Cited in 1 ReviewCited in 57 Documents MSC: 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 35Q55 NLS equations (nonlinear Schrödinger equations) Keywords:Schrödinger equations; homotopy perturbation method PDF BibTeX XML Cite \textit{J. Biazar} and \textit{H. Ghazvini}, Phys. Lett., A 366, No. 1--2, 79--84 (2007; Zbl 1203.65207) Full Text: DOI OpenURL References: [1] He, J.H., Comput. methods appl. mech. engrg., 178, 257, (1999) [2] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000) [3] He, J.H., Appl. math. comput., 156, 527, (2004) [4] He, J.H., Appl. math. comput., 135, 73, (2003) [5] He, J.H., Appl. math. comput., 151, 287, (2004) [6] He, J.H., Chaos solitons fractals, 26, 695, (2005) [7] Cveticanin, L., Chaos solitons fractals, 30, 1221, (2006) [8] A.M. Siddiqui, A. Zeb, Q.K. Ghori, A.M. Benharbit, Chaos Solitons Fractals, in press [9] Ganji, D.D.; Rafei, M., Phys. lett. A, 356, 131, (2006) · Zbl 1160.35517 [10] Q. Wang, Chaos Solitons Fractals, in press [11] Ganji, D.D., Phys. lett. A, 355, 337, (2006) [12] A.M. Siddiqui, R. Mahmood, Q.K. Ghori, Chaos Solitons Fractals, in press [13] T. Ozis, A. Yıldırım, Chaos Solitons Fractals, in press [14] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Phys. lett. A, 352, 404, (2006) · Zbl 1187.76622 [15] Abbasbandy, S., Chaos solitons fractals, 31, 5, 1243, (2007) [16] Odibat, Z.M.; Momani, S., Int. J. nonlinear sci. numer. simulation, 7, 1, 27, (2006) [17] Bildik, N.; Konuralp, A., Int. J. nonlinear sci. numer. simulation, 7, 1, 65, (2006) [18] Ariel, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simulation, 7, 4, 399, (2006) [19] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simulation, 7, 4, 411, (2006) [20] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006) [21] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006) [22] He, J.H., Int. J. nonlinear sci. numer. simulation, 6, 2, 207, (2005) [23] Cai, X.C.; Wu, W.Y.; Li, M.S., Int. J. nonlinear sci. numer. simulation, 7, 1, 109, (2006) [24] Khuri, S.A., Appl. math. comput., 97, 251, (1998) [25] Wang, H., Appl. math. comput., 170, 17, (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.