## Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations.(English)Zbl 1203.65252

Summary: This paper concerns with numerical approximations of solutions of fully nonlinear second order partial differential equations (PDEs). A new notion of weak solutions, called moment solutions, is introduced for fully nonlinear second order PDEs. Unlike viscosity solutions, moment solutions are defined by a constructive method, called the vanishing moment method, and hence, they can be readily computed by existing numerical methods such as finite difference, finite element, spectral Galerkin, and discontinuous Galerkin methods. The main idea of the proposed vanishing moment method is to approximate a fully nonlinear second order PDE by a higher order, in particular, a quasilinear fourth order PDE. We show by various numerical experiments the viability of the proposed vanishing moment method. All our numerical experiments show the convergence of the vanishing moment method, and they also show that moment solutions coincide with viscosity solutions whenever the latter exist.

### MSC:

 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J60 Nonlinear elliptic equations
Full Text:

### References:

  Aleksandrov, A.D.: Certain estimates for the Dirichlet problem. Sov. Math. Dokl. 1, 1151–1154 (1961) · Zbl 0100.09303  Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02) (electronic) · Zbl 1008.65080  Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41(4), 439–505 (2004) (electronic) · Zbl 1150.35047  Aronsson, G., Evans, L.C., Wu, Y.: Fast/slow diffusion and growing sandpiles. J. Differ. Equ. 131(2), 304–335 (1996) · Zbl 0864.35057  Baginski, F.E., Whitaker, N.: Numerical solutions of boundary value problems for $$\mathcal{K}$$ -surfaces in R 3. Numer. Methods Partial Differ. Equ. 12(4), 525–546 (1996) · Zbl 0856.65078  Barles, G., Jakobsen, E.R.: Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43(2), 540–558 (2005) (electronic) · Zbl 1092.65077  Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991) · Zbl 0729.65077  Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis. Handb. Numer. Anal., vol. V, pp. 209–485. North-Holland, Amsterdam (1997)  Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002  Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(4), 1339–1369 (2003) (electronic) · Zbl 1050.65076  Caffarelli, L.: The Monge-Ampère equation and optimal transportation, an elementary review. In: Optimal Transportation and Applications, Martina Franca, 2001. Lecture Notes in Math., vol. 1813, pp. 1–10. Springer, Berlin (2003) · Zbl 1065.49027  Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984) · Zbl 0598.35047  Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. Am. Math. Soc., Providence (1995) · Zbl 0834.35002  Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988) · Zbl 0658.76001  Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7, 376–386 (1999) · Zbl 0993.94504  Chang, S.-Y.A., Gursky, M.J., Yang, P.C.: An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. Math. (2) 155(3), 709–787 (2002) · Zbl 1031.53062  Cheng, S.Y., Yau, S.T.: On the regularity of the Monge-Ampère equation det (2 u/x i sx j )=F(x,u). Commun. Pure Appl. Math. 30(1), 41–68 (1977) · Zbl 0347.35019  Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002). Reprint of the 1978 original (North-Holland, Amsterdam; MR0520174 (58 #25001))  Ciarlet, P.G., Raviart, P.-A.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., pp. 125–145. Academic Press, San Diego (1974). Publication No. 33  Cockburn, B.: Continuous dependence and error estimation for viscosity methods. Acta Numer. 12, 127–180 (2003) · Zbl 1048.65090  Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for linearized incompressible fluid flow: a review. Comput. Fluids 34(4–5), 491–506 (2005) · Zbl 1138.76382  Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.): Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000). Theory, computation and applications, Papers from the 1st International Symposium held in Newport, RI, May 24–26, 1999  Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Classics Library, vol. II. Wiley, New York (1989). Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication · Zbl 0729.35001  Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984) · Zbl 0543.35011  Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992) · Zbl 0755.35015  Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983) · Zbl 0599.35024  Crandall, M.G., Lions, P.-L.: Convergent difference schemes for nonlinear parabolic equations and mean curvature motion. Numer. Math. 75(1), 17–41 (1996) · Zbl 0874.65066  Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris 336(9), 779–784 (2003) · Zbl 1028.65120  Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 339(12), 887–892 (2004) · Zbl 1063.65121  Dean, E.J., Glowinski, R.: On the numerical solution of a two-dimensional Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 341(6), 375–380 (2005) · Zbl 1081.65543  Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006) · Zbl 1119.65116  Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54(5), 575–590 (1989) · Zbl 0668.65097  Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998) · Zbl 0902.35002  Falk, R.S., Osborn, J.E.: Error estimates for mixed methods. RAIRO Anal. Numér. 14(3), 249–277 (1980) · Zbl 0467.65062  Feng, X.: Convergence of the vanishing moment method for the Monge-Ampère equation. Trans. Am. Math. Soc. (2008, submitted)  Feng, X., Karakashian, O.A.: Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22/23, 289–314 (2005) · Zbl 1072.65161  Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76, 1093–1117 (2007) · Zbl 1117.65130  Feng, X., Prohl, A.: Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73, 541–567 (2003) · Zbl 1115.76049  Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation of the mean curvature flows. Numer. Math. 94, 33–65 (2003) · Zbl 1029.65093  Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99, 47–84 (2004) · Zbl 1071.65128  Feng, X., Prohl, A.: Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem. Interfaces Free Bound. 7, 1–28 (2005) · Zbl 1072.35150  Feng, X., Wu, H.-j.: A posteriori error estimates and adaptive finite element methods for the Cahn-Hilliard equation and the Hele-Shaw flow. J. Comput. Math. (2008, in press) · Zbl 1174.65035  Feng, X., Wu, H.-j.: A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005) · Zbl 1096.76025  Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Stochastic Modelling and Applied Probability, vol. 25. Springer, New York (2006) · Zbl 1105.60005  Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002  Girault, V., Rivière, B., Wheeler, M.F.: A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. M2AN Math. Model. Numer. Anal. 39(6), 1115–1147 (2005) · Zbl 1085.76037  Guan, B.: On the existence and regularity of hypersurfaces of prescribed Gauss curvature with boundary. Indiana Univ. Math. J. 44(1), 221–241 (1995) · Zbl 0833.35037  Guan, B., Guan, P.: Convex hypersurfaces of prescribed curvatures. Ann. Math. (2) 156(2), 655–673 (2002) · Zbl 1025.53028  Guan, B., Spruck, J.: Locally convex hypersurfaces of constant curvature with boundary. Commun. Pure Appl. Math. 57(10), 1311–1331 (2004) · Zbl 1066.53109  Gutiérrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhäuser, Boston (2001) · Zbl 0989.35052  Gutiérrez, C.E., Huang, Q.: W 2,p estimates for the parabolic Monge-Ampère equation. Arch. Ration. Mech. Anal. 159(2), 137–177 (2001) · Zbl 0992.35020  Hermann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. 93, 49–83 (1967)  Jakobsen, E.R.: On the rate of convergence of approximation schemes for Bellman equations associated with optimal stopping time problems. Math. Models Methods Appl. Sci. 13(5), 613–644 (2003) · Zbl 1050.35042  Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43–62 (1973) · Zbl 0264.65070  Krylov, N.V.: The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52(3), 365–399 (2005) · Zbl 1087.65100  Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996) · Zbl 0884.35001  Lin, C.-T., Tadmor, E.: High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2163–2186 (2000) (electronic) · Zbl 0964.65097  McCann, R.J., Oberman, A.M.: Exact semi-geostrophic flows in an elliptical ocean basin. Nonlinearity 17(5), 1891–1922 (2004) · Zbl 1115.37070  Miyoshi, T.: A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. Math. 9, 87–116 (1972/73)  Miyoshi, T.: A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26(3), 255–269 (1976) · Zbl 0315.65064  Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3(4), 596–607 (2003) (electronic) · Zbl 1048.65100  Neilan, M.: Numerical methods for second order fully nonlinear partial differential equations. Ph.D. Thesis, The University of Tennessee, Knoxville (2008, in preparation)  Oberman, A.M.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74, 1217–1230 (2005) · Zbl 1094.65110  Oberman, A.M.: Wide stencil finite difference schemes for elliptic Monge-Ampére equation and functions of the eigenvalues of the Hessian. Preprint (2007)  Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation (2 z/x 2)(2 z/y 2)(2 z/x y))2=f and its discretizations. I. Numer. Math. 54(3), 271–293 (1988) · Zbl 0659.65116  Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991) · Zbl 0736.65066  Oukit, A., Pierre, R.: Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited. Numer. Math. 74(4), 453–477 (1996) · Zbl 0923.65080  Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994) · Zbl 0811.65097  Wang, L.: On the regularity theory of fully nonlinear parabolic equations. I. Commun. Pure Appl. Math. 45(1), 27–76 (1992) · Zbl 0832.35025  Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24(3), 1005–1030 (2002) (electronic) · Zbl 1034.65051  Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005) (electronic) · Zbl 1070.65113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.