Notsu, Hirofumi; Tabata, Masahisa A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations. (English) Zbl 1203.76086 J. Sci. Comput. 38, No. 1, 1-14 (2009). Summary: We present a new single-step characteristic-curve finite element scheme of second order in time for the nonstationary incompressible Navier-Stokes equations. After supplying correction terms in the variational formulation, we prove that the scheme is of second order in time. The convergence rate of the scheme is numerically recognized by computational results. Cited in 19 Documents MSC: 76M10 Finite element methods applied to problems in fluid mechanics 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 35Q30 Navier-Stokes equations 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:characteristic-curve; second order in time; the Navier-Stokes equations; finite element method PDF BibTeX XML Cite \textit{H. Notsu} and \textit{M. Tabata}, J. Sci. Comput. 38, No. 1, 1--14 (2009; Zbl 1203.76086) Full Text: DOI Link References: [1] Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. 15, 3–25 (1981) · Zbl 0466.76090 [2] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994) · Zbl 0814.65030 [3] Bristeau, M.O., Glowinski, R., Mantel, B., Periaux, J., Perrier, P., Pironneau, O.: A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution. In: Rautmann, R. (ed.) Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 78–128. Springer, Berlin (1980) · Zbl 0426.65064 [4] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) · Zbl 0497.76041 [5] Boukir, K., Maday, Y., Metivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997) · Zbl 0904.76040 [6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) · Zbl 0788.73002 [7] Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) · Zbl 0492.65051 [8] Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992) · Zbl 0765.76048 [9] FreeFem, http://www.freefem.org/ [10] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer, Berlin (1986) · Zbl 0585.65077 [11] Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989) · Zbl 0697.76100 [12] Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984) · Zbl 0542.76093 [13] Hansbo, P., Johnson, C.: Adaptive streamline diffusion methods for compressible flow using conservation variables. Comput. Methods Appl. Mech. Eng. 87, 267–280 (1991) · Zbl 0760.76046 [14] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge Univ. Press, Cambridge (1987) · Zbl 0628.65098 [15] Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993) · Zbl 0772.76037 [16] Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982) · Zbl 0505.76100 [17] Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989) · Zbl 0665.73059 [18] Pironneau, O., Liou, J., Tezduyar, T.: Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Comput. Methods Appl. Mech. Eng. 100, 117–141 (1992) · Zbl 0761.76073 [19] Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002) · Zbl 1005.65114 [20] Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) · Zbl 0379.65013 [21] Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1988) · Zbl 0637.76024 [22] Tabata, M.: A finite element approximation corresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977) · Zbl 0358.65102 [23] Tabata, M.: Discrepancy between theory and real computation on the stability of some finite element schemes. J. Comput. Appl. Math. 199, 424–431 (2007) · Zbl 1108.65092 [24] Tabata, M., Fujima, S.: Finite-element analysis of high Reynolds number flows past a circular cylinder. J. Comput. Appl. Math. 38, 411–424 (1991) · Zbl 0742.76052 [25] Tabata, M., Fujima, S.: Robustness of a characteristic finite element scheme of second order in time increment. In Groth, C., Zingg, D.W. (eds.) Computational Fluid Dynamics 2004, pp. 177–182. Springer, Berlin (2006) [26] Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Jpn J. Ind. Appl. Math. 17, 371–389 (2000) · Zbl 1306.76026 [27] Tezduyar, T.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992) · Zbl 0747.76069 [28] Thomasset, F.: Implementation of Finite Element Methods for Navier-Stokes Equations. Springer, New York (1981) · Zbl 0475.76036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.