zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows. (English) Zbl 1203.76122
Summary: We present a review of the semi-Lagrangian method for advection-diffusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable.

76M25Other numerical methods (fluid mechanics)
65M70Spectral, collocation and related methods (IVP of PDE)
Full Text: DOI
[1] Loft, R. D., Thomas, S. J., and Dennis, J. M. (2001). Terascale spectral element dynamical core for atmospheric general circulation models. InProceedings of Supercomuting 2001, Denver.
[2] Maday, Y., Patera, A. T., and Ronquist, E. M. (1990). An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow.J. Sci. Comp. 4, 263--292. · Zbl 0724.76070 · doi:10.1007/BF01063118
[3] Xiu, D., and Karniadakis, G. E. (2001). A semi-Lagrangian high-order method for Navier-Stokes equations.J. Comp. Phys. 172, 658. · Zbl 1028.76026 · doi:10.1006/jcph.2001.6847
[4] Robert, A. (1981). A stable numerical integration scheme for the primitive meteorological equations.Atmos. Ocean 19, 35.
[5] Pironneau, O. (1982). On the transport-diffusion algorithm and its applications to the Navier-Stokes equations.Numer. Math. 38, 309. · Zbl 0505.76100 · doi:10.1007/BF01396435
[6] Giraldo, F. X. (2003). Strong and weak Lagrange-Galerkin spectral element methods for shallow water equations.Comput. Math. Appl. 45, 97--121. · Zbl 1029.76042 · doi:10.1016/S0898-1221(03)80010-X
[7] Karniadakis, G. E., and Orszag, S. A. (1993). Nodes, modes, and flow codes.Phys. Today 34.
[8] Karniadakis, G. E., and Sherwin, S. J. (1999).Spectral/hpElement Methods for CFD, Oxford University Press, London. · Zbl 0954.76001
[9] Falcone, M., and Ferretti, R. (1998). Convergence analysis for a class of high-order semi-Lagrangian advection schemes.SIAM J. Numer. Anal. 35, 909. · Zbl 0914.65097 · doi:10.1137/S0036142994273513
[10] Huffenus, J. P., and Khaletzky, D. (1984). A finite element method to solve the Navier-Stokes equations using the method of characteristics.Int. J. Numer. Methods Fluids 4, 247. · Zbl 0547.76038 · doi:10.1002/fld.1650040304
[11] Malevsky, A. V., and Thomas, S. J. (1997). Parallel algorithms for semi-Lagrangian advection.Int. J. Numer. Methods Fluids 25, 455. · Zbl 0910.76063 · doi:10.1002/(SICI)1097-0363(19970830)25:4<455::AID-FLD572>3.0.CO;2-H
[12] Oliveira, A., and Baptista, A. M. (1995). A comparison of integration and interpolation Eulerian-Lagrangian methods.Int. J. Numer. Methods Fluids 21, 183. · Zbl 0841.76041 · doi:10.1002/fld.1650210302
[13] Staniforth, A., and Cote, J. (1991). Semi-Lagrangian integration schemes for atmospheric models -- a review.Mon. Wea. Rev. 119, 2206. · doi:10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
[14] Malevsky, A. V. (1996). Spline-characteristic method for simulation of convective turbulence.J. Comput. Phys. 123, 466. · Zbl 0848.76064 · doi:10.1006/jcph.1996.0037
[15] Bartello, P., and Thomas, S. J. (1996). The cost-effectiveness of semi-Lagrangian advection.Mon. Wea. Rev. 124, 2883. · doi:10.1175/1520-0493(1996)124<2883:TCEOSL>2.0.CO;2
[16] Giraldo, F. X. (1998). The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids.J. Comput. Phys. 147, 114. · Zbl 0920.65070 · doi:10.1006/jcph.1998.6078
[17] McGregor, J. L. (1993). Economical determination of departure points for semi-Lagrangian models.Mon. Wea. Rev. 121, 221. · doi:10.1175/1520-0493(1993)121<0221:EDODPF>2.0.CO;2
[18] McDonald, A., and Bates, J. R. (1987). Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-implicit scheme.Mon. Wea. Rev. 115, 737. · doi:10.1175/1520-0493(1987)115<0737:ITEOTD>2.0.CO;2
[19] McDonald, A. (1984). Accuracy of multi-upstream, semi-Lagrangian advective schemes.Mon. Wea. rev. 112, 1267. · doi:10.1175/1520-0493(1984)112<1267:AOMUSL>2.0.CO;2
[20] Suli, E. S. (1988). Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations.Numer. Math. 53, 459. · Zbl 0637.76024 · doi:10.1007/BF01396329
[21] Allievi, A., and Bermejo, R. (2000). Finite element modified method of characteristics for the Navier-Stokes equations.Int. J. Numer. Methods Fluids 32, 439. · Zbl 0955.76048 · doi:10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y
[22] Priestley, A. (1994). Exact projections and the Lagrange-Galerkin method: A realistic alternative to quadrature.J. Comput. Phys. 112, 316. · Zbl 0809.65097 · doi:10.1006/jcph.1994.1104
[23] Achdou, Y., and Guermond, J. L. (2000). Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations.SIAM J. Numer. Anal. 37, 799. · Zbl 0966.76041 · doi:10.1137/S0036142996313580
[24] Deville, M. O., Fischer, P. F., and Mund, E. H. (2002).High-Order Methods for Incompressible Fluid Flow. Cambridge University Press. · Zbl 1007.76001
[25] Momeni-Masuleh, S. H. (2001).Spectral Methods for the Three Field Formulation of Incompressible Fluid Flow. PhD thesis, Aberystwyth.
[26] Sherwin, S. J. (2003). A substepping Navier-Stokes splitting scheme for spectral/hp element discretisations. In Matuson, T., Ecer, A., Periaux, J., Satufka, N., and Fox, P. (eds.),Parallel Computational Fluid Dynamics: New Frontiers Multi-Disciplinary Applications, North-Holland, pp. 43--52. · Zbl 1074.76572
[27] Leriche, E., and Labrosse, G. (2000). High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties.SIAM J. Sci. Comput. 22(4), 1386. · Zbl 0972.35087 · doi:10.1137/S1064827598349641
[28] Ghia, U., Ghia, K. N., and Shin, C. T. (1982). High-Re solutions for the incompressible flow using the Navier-Stokes equations and a multigrid method.J. Comput. Phys. 48, 387. · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[29] Koseff, J. R., and Street, R. L. (1984). The lid-driven cavity flow: a synthesis of qualitative and quantitative observations.ASME J. Fluids Eng. 106, 390. · doi:10.1115/1.3243136
[30] Xu, J., Xiu, D., and Karniadakis, G. E. (2002). A semi-Lagrangian method for turbulence simulations using mixed spectral discretizations.J. Sci. Comput. 17, 585. · Zbl 1028.76020 · doi:10.1023/A:1015122714039
[31] Smolarkiewicz, P. K., and Pudykiewicz, J. (1992). A class of semi-Lagrangian approximations for fluids.J. Atmo. Sci. 49, 2082. · doi:10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2