zbMATH — the first resource for mathematics

Modeling of the transport phenomena in GMAW using argon-helium mixtures. I: The arc. (English) Zbl 1203.80016
Summary: This article presents a numerical investigation on the transient transport phenomena in the arc which include the arc plasma generation and interactions with moving droplets and workpiece for pure argon and three argon-helium mixtures (75% Ar + 25% He, 50% Ar + 50% He, and 25% Ar + 75% He) during the gas metal arc welding (GMAW) process. The results indicate that the arcs in various shielding gases behave very differently due to the significant differences in thermophysical properties, including the ionization potential and the electrical conductivity, thermal conductivity, specific heat, and viscosity at high temperatures. For the same welding power input, it was found the increase of helium content in the mixtures results in (1) the change of plasma arc shape from bell-like to cone-like and (2) the change of arc pressure distribution along the workpiece surface from Gaussian-like to flat-top with decreasing peak value. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.
[For Part II, see the authors, ibid. 53, No. 25–26, 5722–5732 (2010; Zbl 1203.80013).]

80A22 Stefan problems, phase changes, etc.
78A30 Electro- and magnetostatics
78A55 Technical applications of optics and electromagnetic theory
80A20 Heat and mass transfer, heat flow (MSC2010)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI
[1] K.A. Lyttle, Shielding gas for welding, in: D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, Vol. 6: Welding, Brazing, and Soldering, American Society for Metals, Metal Park, OH, 1993, pp. 64 – 69.
[2] Shackleton, D. N.; Lucas, W.: Shielding gas mixtures for high quality mechanized GMA welding of Q&T steels, Weld. J. 53, 537s-547s (1974)
[3] Dillenbeck, V. R.; Catagno, L.: The effects of various shielding gases and associated mixtures in GMA welding of mild steel, Weld. J. 66, 45-49 (1987)
[4] Hilton, D. E.; Norrish, J.: Shielding gases for arc welding, Weld. met. Fabr. 56, 189-196 (1988)
[5] Stenbacka, N.; Persson, K. A.: Shielding gases for gas metal arc welding, Weld. J. 68, 41-47 (1989)
[6] Larson, N. E.; Meredith, W. F.: Shielding gas selection manual, (1990)
[7] Zhu, P.; Rados, M.; Simpson, S. W.: A theoretical study of gas metal arc welding system, Plasma sources sci. Technol. 4, 495-500 (1995)
[8] Haidar, J.: A theoretical model for gas metal arc welding and gas tungsten arc welding. I, J. appl. Phys. 84, 3518-3529 (1998)
[9] Haidar, J.; Lowke, J. J.: Predictions of metal droplet formation in arc welding, J. appl. Phys. D: appl. Phys. 29, 2951-2960 (1996)
[10] Haidar, J.: An analysis of the formation of metal droplets in arc welding, J. phys. D: appl. Phys. 31, 1233-1244 (1998)
[11] Haidar, J.: Prediction of metal droplet formation in gas metal arc welding II., J. appl. Phys. 84, 3530-3540 (1998)
[12] Haidar, J.: An analysis of heat transfer and fume production in gas metal arc welding. III, J. appl. Phys. 85, 3448-3459 (1999)
[13] Zhu, F. L.; Tsai, H. L.; Marin, S. P.; Wang, P. C.: A comprehensive model on the transport phenomena during gas metal arc welding process, Prog. comput. Fluid dynam. 4, 99-117 (2004)
[14] Fan, H. G.; Kovacevic, R.: A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool, J. phys. D: appl. Phys. 37, 2531-2544 (2004)
[15] Hu, J.; Tsai, H. L.: Heat mass transfer in gas metal arc welding. Part I: The arc, Int. J. Heat mass transfer 50, 833-846 (2007) · Zbl 1124.80329
[16] Hu, J.; Tsai, H. L.: Heat and mass transfer in gas metal arc welding. Part II: The metal, Int. J. Heat mass transfer 50, 808-820 (2007) · Zbl 1124.80329
[17] Haidar, J.; Lowke, J. J.: Effect of CO2 shielding gas on metal droplet formation in arc welding, IEEE trans. Plasma sci. 25, 931-936 (1997)
[18] Jönsson, P. G.; Eagar, T. W.; Szekely, J.: Heat and metal transfer in gas metal arc welding using argon and helium, Metall. trans. 26B, 383-395 (1995)
[19] Dunn, G. J.; Eagar, T. W.: Metal vapors in gas tungsten arcs: part II. Theoretical calculations of transport properties, Metall. trans. 17A, 1865-1871 (1986)
[20] Murphy, A. B.; Tanaka, M.; Yamamoto, K.; Tashiro, S.; Sato, T.; Lowke, J. J.: Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour, J. phys. D: appl. Phys. 42, 194006 (2009)
[21] Yamamoto, K.; Tanaka, M.; Tashiro, S.; Nakata, K.; Yamazaki, K.; Yamamoto, E.; Suzuki, K.; Murphy, A. B.: Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding, Sci. technol. Weld. join. 13, 566-572 (2008)
[22] Haidar, J.: The dynamic effects of metal vapour in gas metal arc welding, J. phys. D: appl. Phys. 43, 165204 (2010)
[23] Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.: Metal vapour causes a central minimum in arc temperature in gas – metal arc welding through increased radiative emission, J. phys. D: appl. Phys. 43, 022001 (2010)
[24] Lowke, J. J.; Morrow, R.; Haidar, J.: A simplified unified theory of arcs and their electrodes, J. phys. D: appl. Phys. 30, 2033-2042 (1997)
[25] Lowke, J. J.; Kovitya, P.; Schmidt, H. P.: Theory of free-burning arc columns including the influence of the cathode, J. phys. D: appl. Phys. 25, 1600-1606 (1992)
[26] Diao, Q. Z.; Tsai, H. L.: Modeling of solute redistribution in the mushy zone during solidification of aluminum – copper alloys, Metall. trans. 24A, 963-973 (1993)
[27] Lancaster, J. F.: The physics of welding, (1986) · Zbl 0592.01033
[28] Carman, P. C.: Fluid flow through granular beds, Trans. inst. Chem. eng. 15, 150-166 (1937)
[29] Kubo, K.; Pehlke, R. D.: Mathematical modeling of porosity formation in solidification, Metall. trans. 16A, 823-829 (1985)
[30] Beavers, G. S.; Sparrow, E. M.: Non-Darcy flow through fibrous porous media, J. appl. Mech. 36, 711-714 (1969)
[31] M.D. Torrey, L.D. Cloutman, R.C. Mjolsness, C.W. Hirt, NASA-VOF2D: A computer program for incompressible flows with free surfaces, LA-10612-MS, Los Alamos National Laboratory, 1985.
[32] Brackbill, J. U.; Kothe, D. B.; Zemach, C.: A continuum method for modeling surface tension, J. comput. Phys. 100, 335-354 (1992) · Zbl 0775.76110
[33] Fan, H. G.; Kovacevic, R.: Droplet, formation, detachment, and impingement on the molten pool in gas metal arc welding, Metall. trans. 30B, 791-801 (1999)
[34] Zacharia, T.; David, S. A.; Vitek, J. M.: Effect of evaporation and temperature-dependent material properties on weld pool development, Metall. trans. 22B, 233-241 (1992)
[35] Finkelnburg, W.; Segal, S. M.: The potential field in around a gas discharge and its influence on the discharge mechanism, Phys. rev. Lett. 83, 582-585 (1951)
[36] Granger, R. A.: Fluid mechanics, (1985)
[37] Patanka, S. V.: Numerical heat transfer and fluid flow, (1980)
[38] Aubreton, J.; Elchinger, M. F.; Rat, V.; Fauchais, P.: Two-temperature transport coefficients in argon – helium thermal plasmas, J. phys. D: appl. Phys. 37, 34-41 (2004)
[39] Lick, W. J.; Emmons, H. W.: Thermodynamic properties of helium to 50,000K, (1962)
[40] Lick, W. J.; Emmons, H. W.: Transport properties of helium from 200 to 50,000K, (1962)
[41] Rhee, S.; Kannatey-Asibu, E.: Observation of metal transfer during gas metal arc welding, Weld. J. 71, 381s-386s (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.