zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A spectral element approximation to price European options with one asset and stochastic volatility. (English) Zbl 1203.91307
Summary: We develop a Legendre quadrilateral spectral element approximation for the Black-Scholes equation to price European options with one underlying asset and stochastic volatility. A weak formulation of the equations imposes the boundary conditions naturally along the boundaries where the equation becomes singular, and in particular, we use an energy method to derive boundary conditions at outer boundaries for which the problem is well-posed on a finite domain. Using Heston’s analytical solution as a benchmark, we show that the spectral element approximation along with the proposed boundary conditions gives exponential convergence in the solution and the Greeks to the level of time and boundary errors in a domain of financial interest.

91G60Numerical methods in mathematical finance
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
65M70Spectral, collocation and related methods (IVP of PDE)
91B70Stochastic models in economics
91G20Derivative securities
Full Text: DOI
[1] Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM, Philadelphia (2005) · Zbl 1078.91008
[2] Andersen, L.B.G., Piterbarg, V.V.: Moment explosions in stochastic volatility models. Finance Stoch. 11(1), 29--50 (2007) · Zbl 1142.65004 · doi:10.1007/s00780-006-0011-7
[3] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007) · Zbl 1121.76001
[4] Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Finance 47(3), 1209--1227 (1992) · doi:10.2307/2328983
[5] Clarke, N., Parrott, K.: Multigrid for American option pricing with stochastic volatility. Appl. Math. Financ. 6(3), 177--195 (1999) · Zbl 1009.91034 · doi:10.1080/135048699334528
[6] Cox, J., Ingersoll Jr., J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53(2), 385--407 (1985) · Zbl 1274.91447 · doi:10.2307/1911242
[7] Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and their applications to mesh generation. Int. J. Numer. Methods Eng. 7, 461--477 (1973) · Zbl 0271.65062 · doi:10.1002/nme.1620070405
[8] Heston, S.L.: A closed-form solution for option with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327--343 (1993) · doi:10.1093/rfs/6.2.327
[9] Hilber, N., Matache, A., Schwab, C.: Sparse wavelet methods for option pricing under stochastic volatility. J. Comput. Financ. 8(4), 1--42 (2005)
[10] Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281--300 (1987) · Zbl 1126.91369 · doi:10.2307/2328253
[11] Hull, J.C.: Options, Futures, and Other Derivatives, 4th edn. Oxford University Press, London (2000) · Zbl 1087.91025
[12] Ikonen, S., Toivanen, J.: Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differ. Equ. 24(1), 104--126 (2008) · Zbl 1152.91516 · doi:10.1002/num.20239
[13] Jackwerth, J.C., Rubinstein, M.: Recovering probability distributions from option prices. J. Finance 51, 1611--1631 (1996) · doi:10.2307/2329531
[14] Johnson, H., Shanno, D.: Option pricing when the variance is changing. J. Financ. Quant. Anal. 22(2), 143--151 (1987) · doi:10.2307/2330709
[15] macBeth, J.D., Merville, L.J.: An empirical examination of the Black-Scholes call option pricing model. J. Finance 34, 1173--1186 (1979) · doi:10.2307/2327242
[16] Patera, A.T.: A spectral element method for fluid dynamics--Laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468--488 (1984) · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[17] Ronquist, E.M., Patera, A.T.: A Lagrange spectral element method for the Stefan problem. Int. J. Numer. Methods Eng. 24(12), 2273--2299 (1987) · Zbl 0632.65126 · doi:10.1002/nme.1620241204
[18] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003) · Zbl 1031.65046
[19] Scott, L.O.: Option pricing when the variance changes randomly: Theory, estimation, and an application. J. Financ. Quant. Anal. 22(4), 419--438 (1987) · doi:10.2307/2330793
[20] Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: An analytic approach. Rev. Financ. Stud. 4(4), 727--752 (1991) · doi:10.1093/rfs/4.4.727
[21] Vasicek, O.: An equilibrium characterisation of the term structure. J. Financ. Econ. 5, 177--188 (1977) · doi:10.1016/0304-405X(77)90016-2
[22] Van Der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631--644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[23] Wiggens, J.B.: Option values under stochastic volatility: Theory and empirical estimates. J. Financ. Econ. 19, 351--372 (1987) · doi:10.1016/0304-405X(87)90009-2
[24] Zhu, W., Kopriva, D.A.: A spectral element method to price European options. I. Single asset with and without jump diffusion. J. Sci. Comput. 39(2), 222--243 (2009) · Zbl 1203.91306 · doi:10.1007/s10915-008-9267-8
[25] Zhu, W., Kopriva, D.A.: A spectral element approximation to price European options. II. The Black-Scholes model with two underlying assets. J. Sci. Comput. 39(3), 323--339 (2009) · Zbl 1203.91305 · doi:10.1007/s10915-009-9270-8
[26] Zvan, R., Forsyth, P., Vetzal, K.: A penalty method for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199--218 (1998) · Zbl 0945.65005 · doi:10.1016/S0377-0427(98)00037-5