zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy epidemic model for the transmission of worms in computer network. (English) Zbl 1203.94148
A compartmental e-epidemic model SIRS (susceptible-infectious-recovered-susceptible) for the transmission of worms in computer network is studied. The authors also analyze the three cases of epidemic control strategies as, when the amount of infection will be low, worms will not be in the network, for the high amount of infection, worm will invade and for the medium amount of infection, worm may or may not invade the computer network. Also, the authors use numerical methods to solve and model the developed set of equations.

MSC:
94D05Fuzzy sets and logic in connection with communication
94B70Error probability for codes
68M11Internet topics
90B18Communication networks (optimization)
03H05Nonstandard models in mathematics
WorldCat.org
Full Text: DOI
References:
[1] Mishra, Bimal Kumar; Saini, D. K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. math. Comput. 188, No. 2, 1476-1482 (2007) · Zbl 1118.68014
[2] Mishra, Bimal Kumar; Saini, Dinesh: Mathematical models on computer viruses. Appl. math. Comput. 187, No. 2, 929-936 (2007) · Zbl 1120.68041
[3] Mishra, Bimal Kumar; Jha, Navnit: Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Appl. math. Comput. 190, No. 2, 1207-1212 (2007) · Zbl 1117.92052
[4] Gelenbe, E.: Dealing with software viruses: a biological paradigm. Inform. secur. Tech. rep. 12, No. 4, 242-250 (2007)
[5] Gelenbe, Erol: Keeping viruses under control. Lecturer notes in computer science 3733 (2005)
[6] Gelenbe, Erol; Kaptan, Varol; Wang, Yu: Biological metaphors for agent behavior. Lecturer notes in computer science 3280, 667-675 (2004)
[7] J.R.C. Piqueira, F.B. Cesar, Dynamic models for computer virus propagation, Math. Probl. Eng. doi:10.1155/2008/940526. · Zbl 1189.68036
[8] Piqueira, J. R. C.; Navarro, B. F.; Monteiro, L. H. A.: Epidemiological models applied to virus in computer network. J. comput. Sci. 1, No. 1, 31-34 (2005)
[9] S. Forest, S. Hofmeyr, A. Somayaji, T. Longstaff, Self-nonself discrimination in a computer, in: Proceeding of IEEE Symposium on Computer Security and Privacy, 1994, pp. 202--212.
[10] Wang, Y.; Wang, C. X.: Modeling the effect of timing parameters on virus propagation. 2003 ACM workshop on rapid malcode, 61-66 (2003)
[11] Kermack, W. O.; Mckendrick, A. G.: Contributions of mathematical theory to epidemics. Proc. R. Soc. lond. Ser. A 115, 700-721 (1927) · Zbl 53.0517.01
[12] Kermack, W. O.; Mckendrick, A. G.: Contributions of mathematical theory to epidemics. Proc. R. Soc. lond. Ser. A 138, 55-83 (1932) · Zbl 0005.30501
[13] Kermack, W. O.; Mckendrick, A. G.: Contributions of mathematical theory to epidemics. Proc. R. Soc. lond. Ser. A 141, 94-122 (1933) · Zbl 0007.31502
[14] Zou, C. C.; Gong, W. B.; Towsley, D.; Gao, L. X.: The monitoring and early detection of Internet worms. IEEE/ACM trans. Netw. 13, No. 5, 961-974 (2005)
[15] Kephart, J. O.; White, S. R.; Chess, D. M.: Computers and epidemiology. IEEE spectr., 20-26 (1993)
[16] Keeling, M. J.; Eames, K. T. D.: Network and epidemic models. J. R. Soc. interface 2, No. 4, 295-307 (2005)
[17] Ma.M. Williamson, J. Leill, An epidemiological model of virus spread and cleanup, 2003. http://www.hpl.hp.com/techreports/.
[18] Newman, M. E. J.; Forrest, S.; Balthrop, J.: Email networks and the spread of computer virus. Phys. rev. E 66 (2002)
[19] Draief, M.; Ganesh, A.; Massouili, L.: Thresholds for virus spread on network. Ann. appl. Probab. 18, No. 2, 359-369 (2008) · Zbl 1137.60051
[20] W.T. Richard, J.C. Mark, Modeling virus propagation in peer-to-peer networks, in: IEEE International Conference on Information, Communication and Signal Processing, ICICS, 2005, pp. 981--985.
[21] Yan, Ping; Liu, Shengqiang: SEIR epidemic model with delay. J. aust. Math. soc. Ser. B 48, No. 1, 119-134 (2006) · Zbl 1100.92058
[22] J.O. Kephart, A biologically inspired immune system for computers, in: Proceeding of International Joint Conference on Artificial Intelligence, 1995.
[23] Madar, N.; Kalisky, T.; Cohen, R.; Ben Avraham, D.; Havlin, S.: Immunization and epidemic dynamics in complex networks. Eur. phys. J. B 38, 269-276 (2004)
[24] Pastor-Satorras, R.; Vespignani, A.: Epidemics and immunization in scale-free networks. Handbook of graphs and network: from the genome to the Internet (2002)
[25] May, R. M.; Lloyd, A. L.: Infection dynamics on scale-free networks. Phys. rev. E 64, No. 066112, 1-3 (2001)
[26] Datta, S.; Wang, H.: The effectiveness of vaccinations on the spread of email-borne computer virus. Ieee ccece/ccgel, 219-223 (2005)
[27] Zou, C. C.; Gong, W.; Towsley, D.: Worm propagation modeling and analysis under dynamic quarantine defense. Proceeding of the ACM CCS workshop on rapid malcode, 51-60 (2003)
[28] Moore, D.; Shannon, C.; Voelker, G. M.; Savage, S.: Internet quarantine: requirements for containing self-propagating code. Proceeding of IEEE INFOCOM 2003 (2003)
[29] Chen, T.; Jamil, N.: Effectiveness of quarantine in worm epidemic. IEEE international conference on communications 2006, 2142-2147 (2006)
[30] Mishra, Bimal K.; Jha, Navnit: SEIQRS model for the transmission of malicious objects in computer network. Appl. math. Model. 34, 710-715 (2010) · Zbl 1185.68042
[31] Klir, G. J.; Yuan, B.: Fuzzy sets and fuzzy logic. (1995) · Zbl 0915.03001
[32] Massad, E.; Burattini, M. N.; Ortega, N. R. S.: Fuzzy logic and measles vaccination: designing a control strategy. Int. J. Epidemiol. 28, No. 3, 550-557 (1999)
[33] Ortega, N. R. S.; Sallum, P. C.; Massad, E.: Fuzzy dynamical systems in epidemic modelling. Kybernetes 29, No. 12, 201-218 (2000) · Zbl 0963.92036
[34] Rothman, K. J.; Greenland, S.: Modern epidemiology. (1998)
[35] G. Shafer, Belief functions and possibility measures, in: Bezdek J.C. (Ed.), Analysis of Fuzzy Information Mathematics and Logic, vol. 1, USA, 1987, pp. 51--84. · Zbl 0655.94025
[36] Yager, R. R.; Filev, D. P.: Essentials of fuzzy modeling and control. (1994) · Zbl 1002.93530
[37] Yen, J.; Langari, R.: Fuzzy logic: intelligence, control, and information. (1999)
[38] Massad, E.: Fuzzy logic in action: applications and epidemiology and beyond. Studfuzz 232 (2008) · Zbl 1306.92003
[39] Barros, L. C.; Bassanezi, R. C.; Leite, M. B. F.: The epidemiological models SI with a fuzzy transmission. Comput. math. Appl. 45, 1619-1628 (2003) · Zbl 1043.92032