×

Lamination and antilamination of Euclidean lattices. (Lamination et antilamination des réseaux euclidiens.) (French. English summary) Zbl 1204.11102

The author studies some invariants related to the Hermite-Korkine-Zolotareff reduction of Euclidean lattices (or of positive definite quadratic forms).
A real positive definite quadratic form is said laminated if its decomposition as a sum of squares \[ {}^t xAx= A_1(x_1+\alpha_{12} x_2+\dots\alpha_{1n}x_n)^2+A_2(x_2+\alpha_{23}x_3+\dots+\alpha_{2n}x_n)^2+\dots+A_nx_n^2, \] is obtained by successive minimizations of coefficients \(A_1, A_2,\dots, A_{n-1}\). The invariant \[ \gamma_-''(A)=\min_{\text{HKZ}(\Lambda)}{\sqrt{A_1/A_n}}, \] (as the historic Korkine-Zolotareff constant \(\gamma_+''(A)=\max_{\text{HKZ}(\Lambda)}{\sqrt{A_1/A_n}}\)) where \(\min\) and \(\max\) are for all the \(\text{HKZ}\) (Hermite-Korkine-Zolotareff) reductions of a lattice \(\Lambda\) of rank \(n\) of an euclidean space \(E\) with \(A\) a Gram \(\text{HKZ}\)-reduced matrix of \(\Lambda\). These invariants are introduced to give an upper bound of the Bergé-Martinet constant \(\gamma^\prime(A)=\sqrt{\gamma(A)\gamma(A^{-1})}\) where \(\gamma(A)\) is the Hermite invariant and to give (conjecturally) a lower bound of \(\gamma(A)\) [A.M. Bergé, J. Number Theory 52, No. 2, 284–298 (1995; Zbl 0829.11036) and J. Martinet, Perfect lattices in Euclidean spaces. Grundlehren der Mathematischen Wissenschaften. 327. Berlin: Springer (2003; Zbl 1017.11031)].
This article introduces the antilaminations, obtained by successive maximizations of \(A_n\), \(A_{n-1},\dots,A_2\) and the corresponding invariants \(\gamma_\pm'''(A)\), examines the relations between these two invariants to compute the value of these constants for the laminated lattices defined by Conway and Sloane.
The author defines and examines the behaviour of recurrence of \(\gamma_{n,\pm}''\) and \(\gamma_{n,\pm}'''\) and derives some inequalities, formulates the conjecture \(\gamma_{5,-}''=\sqrt{2}\) and derives some consequences (e.g. \(\gamma_8=2\)) and he shows the unexpected discontinuity of these invariants from the dimension \(3\). This article contains several computations on the Blichfeldt lattices [H. F. Blichfeldt, Math. Z. 39, 1–15 (1934; Zbl 0009.24403, JFM 60.0924.04)] and on the root lattices.

MSC:

11H50 Minima of forms
11H06 Lattices and convex bodies (number-theoretic aspects)

References:

[1] A.-M. Bergé, Minimal vectors of pairs of dual lattices. J. Number Theory 52 (1995), 284-298. · Zbl 0829.11036
[2] A.-M. Bergé et J. Martinet, Sur un problème de dualité lié aux sphères en géométrie des nombres. J. Number Theory 32 (1989), 14-42. · Zbl 0677.10022
[3] H.F. Blichfeldt, The minimum value of positive quadratic forms in six, seven and eight variables. Math. Z. 39 (1935), 1-15. · Zbl 0009.24403
[4] J.H. Conway et N.J.A. Sloane, Sphere Packings, Lattices and Groups. Springer-Verlag, Grundlehren 290, Heidelberg (1988), ISBN 0-387-98794-0. · Zbl 0634.52002
[5] Carl Friedrich Gauss, Recherches Arithmétiques (Disquisitiones Arithmeticae). Jacques Gabay, reprint 1989.
[6] Ch. Hermite, Lettre à Jacobi. J. Reine Angew. Math 40 (1850), 261-278. · ERAM 040.1108cj
[7] A. Korkine et G. Zolotareff, Sur les formes quadratiques. Math. Ann. 6 (1873), 366-389. · JFM 05.0109.01
[8] J.C. Lagarias, H.W. Lenstra Jr. et C.P. Schnorr, Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10 (1990), 333-348. · Zbl 0723.11029
[9] J. Martinet, Perfect Lattices in Euclidean Spaces. Springer-Verlag, Grundlehren 327, 2003, ISBN 3-540-44236-7. · Zbl 1017.11031
[10] Ch. Zong, Sphere Packings. Springer-Verlag, Universitext, 1999, ISBN 0-387-98794-0. · Zbl 0935.52016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.