zbMATH — the first resource for mathematics

Properties of coefficients of certain linear forms in generalized polylogarithms. (English. Russian original) Zbl 1204.11111
J. Math. Sci., New York 146, No. 2, 5655-5668 (2007); translation from Fundam. Prikl. Mat. 11, No. 6, 41-58 (2005).
Summary: We study properties of coefficients of a linear form originating from a multiple integral. As a corollary, we prove Vasil’ev’s conjecture, connected with the problem of irrationality of the Riemann zeta function at odd integers.
11J72 Irrationality; linear independence over a field
11G55 Polylogarithms and relations with \(K\)-theory
11J82 Measures of irrationality and of transcendence
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
33B30 Higher logarithm functions
Full Text: DOI
[1] F. Beukers, ”A note on the irrationality of \(\zeta\)(2) and \(\zeta\)(3),” Bull. London Math. Soc., 11, No. 3, 268–272 (1979). · Zbl 0421.10023 · doi:10.1112/blms/11.3.268
[2] B. A. Fuchs, Introduction to the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1962).
[3] C. Krattenthaler and T. Rivoal, Hypergéométrie et Fonction Zêta de Riemann, arXiv: math.NT/0311114. · Zbl 1113.11039
[4] V. V. Prasolov, Polynomials, MCCME, Moscow (1999).
[5] D. V. Vasilyev, On Small Linear Forms for the Values of the Riemann Zeta-Function at Odd Integers, Preprint No. 1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk (2001).
[6] S. A. Zlobin, ”Integrals expressible as linear forms in generalized polylogarithms,” Mat. Zametki, 71, No. 5, 782–787 (2002). · Zbl 1049.11077
[7] S. A. Zlobin, ”Expanding multiple integrals into linear forms,” Mat. Zametki, 77,No. 5, 683–706 (2005). · Zbl 1120.11030
[8] S. A. Zlobin, ”Generating functions for multiple zeta values,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 55–59 (2005). · Zbl 1101.11036
[9] W. V. Zudilin, ”Well-poised hypergeometric series and multiple integrals,” Usp. Mat. Nauk, 57, No. 4, 177–178 (2002). · Zbl 1229.33011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.