On the equivalence of general differential Galois theories. (Sur l’équivalence des théories de Galois différentielles générales.) (French) Zbl 1204.12009

Summary: We show that the general differential Galois theory of B. Malgrange [ Monogr. Enseign. Math. 38, 465–501 (2001; Zbl 1033.32020)] and ours [ H. Umemura, Nagoya Math. J. 144, 59–135 (1996; Zbl 0878.12002)] are equivalent.


12H05 Differential algebra
58H05 Pseudogroups and differentiable groupoids
Full Text: DOI


[1] Grothendieck, A., Techniques de construction en géométrie algébrique III, préschemas quotients, exposé 212 Séminaire bourbaki 1960/61, (1995), Société mathématique de France
[2] Grothendieck, A., Séminaire de Géométrie algébrique du bois marie 1960/61 SGA I, revêtements étales et groupe fondamental, Lecture notes in mathematics, vol. 224, (1971), Springer-Verlag Berlin · Zbl 0234.14002
[3] Malgrange, B., Le groupoïde de Galois d’un feuilletage, (), 461-501 · Zbl 1033.32020
[4] Umemura, H., Differential Galois theory of infinite dimension, Nagoya math. J., 144, 59-134, (1996) · Zbl 0878.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.