zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Noncommutative del Pezzo surfaces and Calabi-Yau algebras. (English) Zbl 1204.14004
Let $A={\Bbb C}[x_1,x_2,x_3]$ be the polynomial ${\Bbb C}$-algebra in 3 variables, $t$ a non-zero complex number and choose a polynomial $\Phi_k\in {\Bbb C}[x_k]$ for each $1\leq k\leq 3$. Then the noncommutative ${\Bbb C}$-algebras ${\cal U}^t(\Phi)$ generated by $x_1,x_2,x_3$ with the relations: $x_1x_2-tx_2x_1=\Phi_3(x_3)$, $x_2x_3-tx_2x_1=\Phi_1(x_1)$, $x_3x_1-tx_1x_3=\Phi_2(x_2)$ are noncommutative deformations of $A$ and form a family of Calabi-Yau algebras. Here it constructs a deformation-quantization of the coordinate ring of a del Pezzo surface of type $E_r$, $6\leq r\leq 8$ considering noncommutative algebras of the form ${\cal U}^t(\Phi)/\langle\langle\Psi\rangle\rangle$, where $\langle\langle\Psi\rangle\rangle$ is the ideal generated by a central element $\Psi$, which generates the center of ${\cal U}^t(\Phi)$ if $\Phi$ is generic enough. Also it shows that the family of del Pezzo surfaces of type $E_r$ provides a semiuniversal Poisson deformation of the Poisson structure inherited by hypersurfaces in ${\Bbb C}^3$ with an isolated quasi-homogeneous elliptic singularity of type $E_r$.

MSC:
14B07Deformations of singularities (local theory)
14H52Elliptic curves
14J32Calabi-Yau manifolds
13C14Cohen-Macaulay modules
WorldCat.org
Full Text: DOI arXiv
References:
[1] Artin, M.: Some problems on three-dimensional graded domains. In: Representation The- ory and Algebraic Geometry, London Math. Soc. Lecture Note Ser. 238, Cambridge Univ. Press, 1-19 (1997) · Zbl 0888.16025
[2] Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math. 66, 171-216 (1987) · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[3] Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of el- liptic curves. In: The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, 33-85 (1990) · Zbl 0744.14024
[4] Artin, M.: Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra 133, 249-271 (1990) · Zbl 0717.14001 · doi:10.1016/0021-8693(90)90269-T
[5] Berger, R., Taillefer, R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncommutative Geom. 1, 241-270 (2007) · Zbl 1161.16022 · doi:10.4171/JNCG/6 · arxiv:math/0610112
[6] Bocklandt, R.: Graded Calabi Yau algebras of dimension 3. J. Pure Appl. Algebra 212, 14-32 (2008) · Zbl 1132.16017 · doi:10.1016/j.jpaa.2007.03.009 · arxiv:math/0603558
[7] Brieskorn, E.: Singular elements of semi-simple algebraic groups. In: Actes du Congr`es International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 279-284 (1971) · Zbl 0223.22012
[8] Le Bruyn, L., Smith, P., Van den Bergh, M.: Central extensions of three-dimensional Artin-Schelter regular algebras. Math. Z. 222, 171-212 (1996) · Zbl 0876.17019 · doi:10.1007/PL00004532 · eudml:174881
[9] Brylinski, J.-L.: A differential complex for Poisson manifolds. J. Differential Geom. 28, 93-114 (1988) · Zbl 0634.58029 · euclid:jdg/1214442161
[10] Calaque, D., Van den Bergh, M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224, 1839-1889 (2010) · Zbl 1197.14017 · doi:10.1016/j.aim.2010.01.012 · arxiv:0708.2725
[11] Cassidy, T.: Global dimension 4 extensions of Artin-Schelter regular algebras. J. Algebra 220, 225-254 (1999) · Zbl 0942.16050 · doi:10.1006/jabr.1999.7902
[12] Cassidy, T.: Central extensions of Stephenson’s algebras. Comm. Algebra 31, 1615-1632 (2003) · Zbl 1061.16045 · doi:10.1081/AGB-120018499
[13] Chan, D., Kulkarni, R.: Del Pezzo orders on projective surfaces. Adv. Math. 173, 144-177 (2003) · Zbl 1051.14005 · doi:10.1016/S0001-8708(02)00020-8
[14] Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209, 274-336 (2007) · Zbl 1111.53066 · doi:10.1016/j.aim.2006.05.004 · arxiv:math/0502301
[15] Demazure, M., et al. (eds.): Séminaire sur les Singularités des Surfaces, 1976-1977. Lec- ture Notes in Math. 777, Springer (1980)
[16] Dolgushev, V.: The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math. (N.S.) 14, 199-228 (2009) · Zbl 1172.53054 · doi:10.1007/s00029-008-0062-z · arxiv:math/0612288
[17] Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc. 260, 35-64 (1980) · Zbl 0444.13006 · doi:10.2307/1999875
[18] Etingof, P., Ginzburg, V.: Noncommutative complete intersections and matrix integrals. Pure Appl. Math. Quart. 3, 107-151 (2007) · Zbl 1151.14006 · doi:10.4310/PAMQ.2007.v3.n1.a4 · arxiv:math/0603272
[19] Etingof, P., Oblomkov, A., Rains, E.: Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces. Adv. Math. 212, 749-796 (2007) · Zbl 1118.14003 · doi:10.1016/j.aim.2006.11.008 · arxiv:math/0406480
[20] Ginzburg, V.: Calabi-Yau algebras. arXiv:math.AG/0612139
[21] Ginzburg, V., Kaledin, D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186, 1-57 (2004) · Zbl 1062.53074 · doi:10.1016/j.aim.2003.07.006 · arxiv:math/0212279
[22] Kajiura, H., Saito, K., Takahashi, A.: Matrix factorizations and representations of quivers II: type ADE case. Adv. Math. 211, 327-362 (2007) · Zbl 1167.16011 · doi:10.1016/j.aim.2006.08.005 · arxiv:math/0511155
[23] Kaledin, D.: On the coordinate ring of a projective Poisson scheme. Math. Res. Lett. 13, 99-107 (2006) · Zbl 1090.53064 · doi:10.4310/MRL.2006.v13.n1.a8 · arxiv:math/0312134