zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay. (English) Zbl 1204.35171
Summary: This paper deals with the existence of solutions to impulsive partial functional differential equations with impulses at variable times and infinite delay, involving the Caputo fractional derivative. Our works are proved by using a nonlinear alternative of Leray-Schauder type.

MSC:
35R12Impulsive partial differential equations
35R11Fractional partial differential equations
26A33Fractional derivatives and integrals (real functions)
WorldCat.org
Full Text: DOI
References:
[1] Kilbas, A. A.; Bonilla, B.; Trujillo, J.: Nonlinear differential equations of fractional order in a space of integrable functions, Dokl. ross. Akad. nauk. 374, No. 4, 445-449 (2000) · Zbl 1137.34308
[2] Semenchuk, N. P.: On one class of differential equations of noninteger order, Differ. uravn. 10, 1831-1833 (1982) · Zbl 0522.34012
[3] Vityuk, A. N.: Existence of solutions of partial differential inclusions of fractional order, Izv. vyssh. Uchebn. ser. Mat. 8, 13-19 (1997) · Zbl 0905.35102
[4] Glockle, W. G.; Nonnenmacher, T. F.: A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68, 46-53 (1995)
[5] Hilfer, R.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[6] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[7] Metzler, F.; Schick, W.; Kilian, H. G.; Nonnenmacher, T. F.: Relaxation in filled polymers: a fractional calculus approach, J. chem. Phys. 103, 7180-7186 (1995)
[8] Kilbas, A. A.; Srivastava, Hari M.; Trujillo, Juan J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006) · Zbl 1092.45003
[9] Lakshmikantham, V.; Leela, S.; Vasundhara, J.: Theory of fractional dynamic systems, (2009) · Zbl 1188.37002
[10] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[11] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives. Theory and applications, (1993) · Zbl 0818.26003
[12] Abbas, S.; Benchohra, M.: Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. math. Anal. 7, 62-72 (2009) · Zbl 1178.35371
[13] Abbas, S.; Benchohra, M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear anal. Hybrid syst. 3, 597-604 (2009) · Zbl 1219.35345 · doi:10.1016/j.nahs.2009.05.001
[14] Agarwal, R. P.; Benchohra, M.; Hamani, S.: A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[15] Belarbi, A.; Benchohra, M.; Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. anal. 85, 1459-1470 (2006) · Zbl 1175.34080 · doi:10.1080/00036810601066350
[16] Benchohra, M.; Graef, J. R.; Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions, Appl. anal. 87, No. 7, 851-863 (2008) · Zbl 1198.26008 · doi:10.1080/00036810802307579
[17] Benchohra, M.; Hamani, S.; Ntouyas, S. K.: Boundary value problems for differential equations with fractional order, Surv. math. Appl. 3, 1-12 (2008) · Zbl 1157.26301 · http://www.utgjiu.ro/math/sma/v03/a01.html
[18] Benchohra, M.; Henderson, J.; Ntouyas, S. K.: Impulsive differential equations and inclusions, Impulsive differential equations and inclusions 2 (2006) · Zbl 1130.34003
[19] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.: Existence results for functional differential equations of fractional order, J. math. Anal. appl. 338, 1340-1350 (2008) · Zbl 1209.34096 · doi:10.1016/j.jmaa.2007.06.021
[20] Benchohra, M.; Slimani, B. A.: Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential equations 2009, No. 10, 1-11 (2009) · Zbl 1178.34004 · emis:journals/EJDE/Volumes/2009/10/abstr.html
[21] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[22] Kilbas, A. A.; Marzan, S. A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differ. equ. 41, 84-89 (2005) · Zbl 1160.34301 · doi:10.1007/s10625-005-0137-y
[23] Vityuk, A. N.; Golushkov, A. V.: Existence of solutions of systems of partial differential equations of fractional order, Nonlinear oscil. 7, No. 3, 318-325 (2004) · Zbl 1092.35500
[24] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential equations 36, 1-12 (2006) · Zbl 1096.34016 · emis:journals/EJDE/Volumes/2006/36/abstr.html
[25] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect, (1989) · Zbl 0683.34032
[26] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[27] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[28] Bajo, I.; Liz, E.: Periodic boundary value problem for first order differential equations with impulses at variable times, J. math. Anal. appl. 204, 65-73 (1996) · Zbl 0876.34020
[29] Belarbi, A.; Benchohra, M.: Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times, J. math. Anal. appl. 327, 1116-1129 (2007) · Zbl 1122.35148
[30] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.: Impulsive functional dierential equations with variable times, Comput. math. Appl. 47, 1659-1665 (2004) · Zbl 1070.34108
[31] Frigon, M.; O’regan, D.: Impulsive differential equations with variable times, Nonlinear anal. 26, 1913-1922 (1996) · Zbl 0863.34015 · doi:10.1016/0362-546X(95)00053-X
[32] Frigon, M.; O’regan, D.: First order impulsive initial and periodic problems with variable moments, J. math. Anal. appl. 233, 730-739 (1999) · Zbl 0930.34016 · doi:10.1006/jmaa.1999.6336
[33] Frigon, M.; O’regan, D.: Second order Sturm--Liouville bvp’s with impulses at variable moments, Dyn. contin. Discrete impuls. Syst. 8, No. 2, 149-159 (2001) · Zbl 0996.34015
[34] Kaul, S. K.; Lakshmikantham, V.; Leela, S.: Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times, Nonlinear anal. 22, 1263-1270 (1994) · Zbl 0807.34064 · doi:10.1016/0362-546X(94)90109-0
[35] Kaul, S. K.; Liu, X. Z.: Vector Lyapunov functions for impulsive differential systems with variable times, Dyn. contin. Discrete impuls. Syst. 6, 25-38 (1999) · Zbl 0942.34009
[36] Kaul, S. K.; Liu, X. Z.: Impulsive integro-differential equations with variable times, Nonlinear stud. 8, 21-32 (2001) · Zbl 0993.45009
[37] Lakshmikantham, V.; Papageorgiou, N. S.; Vasundhara, J.: The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments, Appl. anal. 15, 41-58 (1993) · Zbl 0793.34013 · doi:10.1080/00036819308840203
[38] Dawidowski, M.; Kubiaczyk, I.: An existence theorem for the generalized hyperbolic equation zxy”$inF(x,y,z)$ in Banach space, Ann. soc. Math. Pol ser. I, comment. Math. 30, No. 1, 41-49 (1990)$ · Zbl 0759.35029
[39] Kamont, Z.: Hyperbolic functional differential inequalities and applications, (1999) · Zbl 0973.35188
[40] Kamont, Z.; Kropielnicka, K.: Differential difference inequalities related to hyperbolic functional differential systems and applications, Math. inequal. Appl. 8, No. 4, 655-674 (2005) · Zbl 1091.35105
[41] Lakshmikantham, V.; Pandit, S. G.: The method of upper, lower solutions and hyperbolic partial differential equations, J. math. Anal. appl. 105, 466-477 (1985) · Zbl 0569.35056 · doi:10.1016/0022-247X(85)90062-9
[42] Pandit, S. G.: Monotone methods for systems of nonlinear hyperbolic problems in two independent variables, Nonlinear anal. 30, 235-272 (1997) · Zbl 0892.35095 · doi:10.1016/S0362-546X(96)00265-9
[43] Dugundji, J.; Granas, A.: Fixed point theory, Monografie mat. (1982) · Zbl 0483.47038
[44] Hale, J.; Kato, J.: Phase space for retarded equations with infinite delay, Funkcial. ekvac. 21, 11-41 (1978) · Zbl 0383.34055
[45] Hale, J. K.; Lunel, S. Verduyn: Introduction to functional--differential equations, Applied mathematical sciences 99 (1993) · Zbl 0787.34002
[46] Hino, Y.; Murakami, S.; Naito, T.: Functional differential equations with infinite delay, Lecture notes in mathematics 1473 (1991) · Zbl 0732.34051
[47] Lakshmikantham, V.; Wen, L.; Zhang, B.: Theory of differential equations with unbounded delay, Mathematics and its applications (1994) · Zbl 0823.34069
[48] Czlapinski, T.: On the Darboux problem for partial differential-functional equations with infinite delay at derivatives, Nonlinear anal. 44, 389-398 (2001) · Zbl 0989.35133 · doi:10.1016/S0362-546X(99)00275-8
[49] Czlapinski, T.: Existence of solutions of the Darboux problem for partial differential--functional equations with infinite delay in a Banach space, Comment. math. Prace mat. 35, 111-122 (1995) · Zbl 0859.35131
[50] Henry, D.: Geometric theory of semilinear parabolic partial differential equations, (1989)
[51] Granas, A.; Dugundji, J.: Fixed point theory, (2003) · Zbl 1025.47002