Wang, Jun; Zhang, Fubao; Xu, Junxiang Existence and multiplicity of homoclinic orbits for the second order Hamiltonian systems. (English) Zbl 1204.37067 J. Math. Anal. Appl. 366, No. 2, 569-581 (2010). The paper is concerned with the existence of homoclinic orbits of the second order Hamiltonian system \[ -\ddot{u}+L(t) u=\nabla_u R(t,u) \tag{HS} \] in \(\mathbb{R}^N\). Here \(L(t)\in\mathbb{R}^{N\times N}\) is symmetric and continuous in \(t\), and \(R:\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}\) is \(C^1\) and satisfies \(0\leq R(t,u)=o(|u|)\) as \(u\to 0\). It is allowed that \(\inf_{t\in\mathbb{R}}\min\,\mathrm{spec}L(t)=-\infty\) so that the operator \(-\frac{d^2}{dt^2}+L(t)\) may not be bounded below, and the associated quadratic form on \(L^2(\mathbb{R},\mathbb{R}^n)\) is strongly indefinite. Assuming that \(R_u\) is asymptotically linear in \(u\), the authors present conditions on \(L\) and \(R\) such that (HS) has a homoclinic solution. If \(R\) is even in \(u\), they obtain multiple homoclinics. The proofs are based on a generalized linking theorem for strongly indefinite functionals due to Y. Ding and the reviewer [Math. Nachr. 279, No. 12, 1267–1288 (2006; Zbl 1117.58007)]. Reviewer: Thomas J. Bartsch (Gießen) Cited in 26 Documents MSC: 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) Keywords:Hamiltonian systems; homoclinic orbits; variational methods; generalized linking theorem Citations:Zbl 1117.58007 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Math. Anal. Appl. 366, No. 2, 569--581 (2010; Zbl 1204.37067) Full Text: DOI OpenURL References: [1] Ding, Y.H., Variational methods for strongly indefinite problems, (2008), World Scientific Press [2] Ding, Y.H.; Ruf, B., Solutions of a nonlinear Dirac equation with external fields, Arch. ration. mech. anal., 190, 57-82, (2008) · Zbl 1161.35041 [3] Ding, Y.H.; Szulkin, A., Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. var. partial differential equations, 29, 397-419, (2007) · Zbl 1119.35082 [4] Ding, Y.H.; Jeanjean, L., Homoclinic orbits for nonperiodic Hamiltonian system, J. differential equations, 237, 473-490, (2007) · Zbl 1117.37032 [5] Ding, Y.H., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 1095-1113, (1995) · Zbl 0840.34044 [6] Ding, Y.H.; Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dynam. systems appl., 2, 131-145, (1993) · Zbl 0771.34031 [7] Ding, Y.H.; Girardi, M., Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear anal., 38, 391-415, (1999) · Zbl 0938.37034 [8] Bartsch, T.; Ding, Y.H., Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. nachr., 279, 1267-1288, (2006) · Zbl 1117.58007 [9] Coti-Zelati, V.; Rabinowitz, P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. amer. math. soc., 4, 693-742, (1991) · Zbl 0744.34045 [10] Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499, (1990) · Zbl 0707.58022 [11] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential integral equations, 5, 1115-1120, (1992) · Zbl 0759.58018 [12] Rabinowitz, P.H., Homoclinic orbits for a class of Hamiltonian systems, Proc. roy. soc. Edinburgh, 114, 33-38, (1990) · Zbl 0705.34054 [13] Qu, Z.Q.; Tang, C.L., Existence of homoclinic solution for the second order Hamiltonian systems, J. math. anal. appl., 291, 203-213, (2004) · Zbl 1057.34038 [14] Lv, Y.; Tang, C.L., Existence of even homoclinic solution for the second order Hamiltonian systems, Nonlinear anal., 67, 2189-2198, (2007) · Zbl 1121.37048 [15] Yang, J.; Zhang, F.B., Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear anal., 10, 1417-1423, (2009) · Zbl 1162.34328 [16] Zou, W.M.; Li, S.J., Infinitely many homoclinic orbits for the second order Hamiltonian systems, Appl. math. lett., 16, 1283-1287, (2003) · Zbl 1039.37044 [17] Edmunds, D.E.; Evans, W.D., Spectral theory and differential operators, (1987), Clarendon Press Oxford · Zbl 0628.47017 [18] Kryszewski, W.; Szulkin, A., Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. difference equ., 3, 441-472, (1998) · Zbl 0947.35061 [19] Coti-Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. ann., 228, 133-160, (1990) · Zbl 0731.34050 [20] Ding, Y.H.; Li, S.J., Homoclinic orbits for first order Hamiltonian systems, J. math. anal. appl., 189, 585-601, (1995) · Zbl 0818.34023 [21] Hofer, H.; Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. ann., 228, 483-503, (1990) · Zbl 0702.34039 [22] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 27-42, (1992) · Zbl 0725.58017 [23] Tanaka, K., Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits, J. differential equations, 94, 315-339, (1991) · Zbl 0787.34041 [24] Ding, Y.H.; Willem, M., Homoclinic orbits of a Hamiltonian system, Z. angew. math. phys., 50, 759-778, (1999) · Zbl 0997.37041 [25] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. funct. anal., 187, 25-41, (2001) · Zbl 0984.37072 [26] Heinz, H.P., On the number of solutions of nonlinear Schrödinger equations and on unique continuation, J. differential equations, 116, 149-171, (1995) · Zbl 0840.35105 [27] Reed, M.; Simon, B., Analysis of operator, () · Zbl 0517.47006 [28] Simon, B., Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, II, III, Proc. amer. math. soc., 45, 454-456, (1998) · Zbl 0292.35061 [29] Liu, Z.L.; Su, J.B.; Wang, Z.Q., Solutions of elliptic problems with nonlinearities of linear growth, Calc. var., 35, 463-480, (2009) · Zbl 1177.35095 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.