×

Nonparametric estimation of multivariate convex-transformed densities. (English) Zbl 1204.62058

Summary: We study estimation of multivariate densities \(p\) of the form \(p(x)=h(g(x))\) for \(x\in \mathbb R^d\) and for a fixed monotone function \(h\) and an unknown convex function \(g\). The canonical example is \(h(y)=e - y\) for \(y\in \mathbb R\); in this case, the resulting class of densities \[ \mathcal P (e^{-y}) = \{\exp (-g): g \text{ is convex }\} \] is well known as the class of log-concave densities. Other functions \(h\) allow for classes of densities with heavier tails than the log-concave class.
We first investigate when the maximum likelihood estimator \(\hat p\) exists for the class \(\mathcal P(h)\) for various choices of monotone transformations \(h\), including decreasing and increasing functions \(h\). The resulting models for increasing transformations \(h\) extend the classes of log-convex densities studied previously in the econometrics literature, corresponding to \(h(y)=\exp(y)\).
We then establish consistency of the maximum likelihood estimator for fairly general functions \(h\), including the log-concave class \(\mathcal P(e^{-y})\) and many others. In a final section, we provide asymptotic minimax lower bounds for the estimation of \(p\) and its vector of derivatives at a fixed point \(x_{0}\) under natural smoothness hypotheses on \(h\) and \(g\). The proofs rely heavily on results from convex analysis.

MSC:

62G07 Density estimation
62H12 Estimation in multivariate analysis
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference

Software:

logcondens
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] An, M. Y. (1998). Logconcavity versus logconvexity: A complete characterization. J. Econom. Theory 80 350-369. · Zbl 0911.90071
[2] Avriel, M. (1972). r -convex functions. Math. Program. 2 309-323. · Zbl 0249.90063
[3] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. · Zbl 1160.62008
[4] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. Available at . · Zbl 0539.62064
[5] Borell, C. (1975). Convex set functions in d -space. Period. Math. Hungar. 6 111-136. · Zbl 0307.28009
[6] Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389. · Zbl 0334.26009
[7] Bronšteĭn, E. M. (1976). \varepsilon -entropy of convex sets and functions. Sibirsk. Mat. Ž. 17 508-514, 715. · Zbl 0805.62037
[8] Cordero-Erausquin, D., McCann, R. J. and Schmuckenschläger, M. (2001). A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 219-257. · Zbl 1026.58018
[9] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Statist. 4 254-270. · Zbl 1329.62183
[10] Cule, M., Samworth, R. and Stewart, M. (2010). Maximum likelihood estimation of a multidimensional log-concave density (with discussion). J. Roy. Statist. Soc. Ser. B 72 1-32. · Zbl 1329.62183
[11] Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity and Applications . Academic Press, Boston, MA. · Zbl 0646.62008
[12] Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence. II, III. Ann. Statist. 19 633-667, 668-701. · Zbl 0754.62028
[13] Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63 . Cambridge Univ. Press, Cambridge. · Zbl 0951.60033
[14] Dümbgen, L., Hüsler, A. and Rufibach, K. (2007). Active set and EM algorithms for log-concave densities based on complete and censored data. Technical report, Univ. Bern. Available at .
[15] Dümbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency. Bernoulli 15 40-68. · Zbl 1200.62030
[16] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist. 29 1653-1698. · Zbl 1043.62027
[17] Ibragimov, I. A. (1956). On the composition of unimodal distributions. Teor. Veroyatnost. i Primenen. 1 283-288. · Zbl 0073.12501
[18] Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions . Wiley, New York. · Zbl 0248.62021
[19] Jongbloed, G. (2000). Minimax lower bounds and moduli of continuity. Statist. Probab. Lett. 50 279-284. · Zbl 0965.60083
[20] Koenker, R. and Mizera, I. (2010). Quasi-concave density estimation. Ann. Statist. 38 2998-3027. · Zbl 1200.62031
[21] Okamoto, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 763-765. · Zbl 0261.62043
[22] Pal, J. K., Woodroofe, M. B. and Meyer, M. C. (2007). Estimating a Polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. Institute of Mathematical Statistics Lecture Notes-Monograph Series 54 239-249. IMS, Beachwood, OH.
[23] Prékopa, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 335-343. · Zbl 0264.90038
[24] Rinott, Y. (1976). On convexity of measures. Ann. Probab. 4 1020-1026. · Zbl 0347.60003
[25] Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series 28 . Princeton Univ. Press, Princeton. · Zbl 0193.18401
[26] Rufibach, K. (2006). Log-concave density estimation and bump hunting for I.I.D. observations. Ph.D. thesis, Univ. Bern and Göttingen.
[27] Rufibach, K. (2007). Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul. 77 561-574. · Zbl 1146.62027
[28] Schuhmacher, D. and Duembgen, L. (2010). Consistency of multivariate log-concave density estimators. Statist. Probab. Lett. 80 376-380. · Zbl 1181.62048
[29] Schuhmacher, D., Hüsler, A. and Duembgen, L. (2009). Multivariate log-concave distributions as a nearly parametric model. Technical report, Univ. Bern. Available at .
[30] Seregin, A. and Wellner, J. A. (2010). Supplement to “Nonparametric estimation of multivariate convex-transformed densities.” DOI: . · Zbl 1204.62058
[31] Uhrin, B. (1984). Some remarks about the convolution of unimodal functions. Ann. Probab. 12 640-645. · Zbl 0554.60028
[32] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes, with Applications to Statistics . Springer, New York. · Zbl 0862.60002
[33] Walther, G. (2010). Inference and modeling with log-concave distributions. Statist. Sci. 24 319-327. · Zbl 1329.62192
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.