zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter analysis based on stochastic model for differential evolution algorithm. (English) Zbl 1204.65072
Summary: A stochastic model is used to describe and analyze the evolution process of differential evolution (DE) for numerical optimization. With the model, it illustrates how the probability distribution of the whole population is changed by mutation, selection and crossover operations. Based on the theoretical analysis, some guidelines about the parameter setting for DE are provided. In addition, numerical simulations are carried out to verify the conclusions drawn from model analysis.

65K05Mathematical programming (numerical methods)
90C15Stochastic programming
Full Text: DOI
[1] Storn, R.; Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11, No. 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[2] Chiou, J. P.; Chang, C. F.; Su, C. T.: Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems, IEEE transactions on power systems 20, No. 2, 668-674 (2005)
[3] Nobakhti, A.; Wang, H.: A simple self-adaptive differential evolution algorithm with application on the ALSTOM, Applied soft computing 8, No. 1, 350-370 (2008)
[4] Eiben, A. E.; Hinterding, R.; Michalewicz, Z.: Parameter control in evolutionary algorithms, IEEE transactions on evolutionary computation 3, No. 2, 124-141 (1999)
[5] Ali, M. M.: Differential evolution with preferential crossover, European journal of operational research 181, No. 3, 1137-1147 (2007) · Zbl 1123.90058 · doi:10.1016/j.ejor.2005.06.077
[6] K. Price, R. Storn, DE homepage, http://www.icsi.berkeley.edu/∼storn/code.html, 2001.