zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solution for different profiles of fin with temperature-dependent thermal conductivity. (English) Zbl 1204.74039
Summary: Three different profiles of the straight fin that has a temperature-dependent thermal conductivity are investigated by differential transformation method (DTM) and compared with numerical solution. Fin profiles are rectangular, convex, and exponential. For validation of the DTM, the heat equation is solved numerically by the fourth-order Runge-Kutta method. The temperature distribution, fin efficiency, and fin heat transfer rate are presented for three fin profiles and a range of values of heat transfer parameters. DTM results indicate that series converge rapidly with high accuracy. The efficiency and base temperature of the exponential profile are higher than the rectangular and the convex profiles. The results indicate that the numerical data and analytical method are in agreement with each other.

MSC:
74S05Finite element methods in solid mechanics
74F05Thermal effects in solid mechanics
WorldCat.org
Full Text: DOI EuDML
References:
[1] M. H. Sharqawy and S. M. Zubair, “Efficiency and optimization of straight fins with combined heat and mass transfer-an analytical solution,” Applied Thermal Engineering, vol. 28, no. 17-18, pp. 2279-2288, 2008. · doi:10.1016/j.applthermaleng.2008.01.003
[2] M. H. Sharqawy and S. M. Zubair, “Efficiency and optimization of an annular fin with combined heat and mass transfer-an analytical solution,” International Journal of Refrigeration, vol. 30, no. 5, pp. 751-757, 2007. · doi:10.1016/j.ijrefrig.2006.12.008
[3] A. H. Bokhari, A. H. Kara, and F. D. Zaman, “A note on a symmetry analysis and exact solutions of a nonlinear fin equation,” Applied Mathematics Letters, vol. 19, no. 12, pp. 1356-1360, 2006. · Zbl 1143.35311 · doi:10.1016/j.aml.2006.02.003
[4] S. Abbasbandy and E. Shivanian, “Exact analytical solution of a nonlinear equation arising in heat transfer,” Physics Letters. A, vol. 374, no. 4, pp. 567-574, 2010. · Zbl 1235.35273 · doi:10.1016/j.physleta.2009.11.062
[5] F. Khani, M. A. Raji, and H. H. Nejad, “Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3327-3338, 2009. · Zbl 1221.74083 · doi:10.1016/j.cnsns.2009.01.012
[6] C. Arslanturk, “A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 32, no. 6, pp. 831-841, 2005. · doi:10.1016/j.icheatmasstransfer.2004.10.006
[7] A. Rajabi, “Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity,” Physics Letters. Section A, vol. 364, no. 1, pp. 33-37, 2007. · Zbl 1203.74148 · doi:10.1016/j.physleta.2006.11.062
[8] A. Franco, “An analytical method for the optimum thermal design of convective longitudinal fin arrays,” Heat and Mass Transfer, vol. 45, no. 12, pp. 1503-1517, 2009. · doi:10.1007/s00231-009-0526-5
[9] W. W. Lin and D. J. Lee, “Boiling on a straight pin fin with variable thermal conductivity,” Heat and Mass Transfer, vol. 34, no. 5, pp. 381-386, 1999.
[10] J. K. Zhou, Differential Transformation Method and Its Application for Electrical Circuits, Huazhong University Press, Wuhan, China, 1986.
[11] M. M. Rashidi and E. Erfani, “New analytical method for solving Burgers’ and nonlinear heat transfer equations and comparison with HAM,” Computer Physics Communications, vol. 180, no. 9, pp. 1539-1544, 2009. · doi:10.1016/j.cpc.2009.04.009
[12] S.-H. Chang and I.-L. Chang, “A new algorithm for calculating one-dimensional differential transform of nonlinear functions,” Applied Mathematics and Computation, vol. 195, no. 2, pp. 799-805, 2008. · Zbl 1132.65062 · doi:10.1016/j.amc.2007.05.026
[13] S.-H. Chang and I.-L. Chang, “A new algorithm for calculating two-dimensional differential transform of nonlinear functions,” Applied Mathematics and Computation, vol. 215, no. 7, pp. 2486-2494, 2009. · Zbl 1179.65121 · doi:10.1016/j.amc.2009.08.046
[14] Y. Keskin and G. Oturan\cc, “Application of reduced differential transformation method for solving gas dynamic equation,” International Journal of Contemporary Mathematical Sciences, vol. 22, no. 22, pp. 1091-1096, 2010. · Zbl 1208.35112 · http://www.m-hikari.com/ijcms-2010/21-24-2010/index.html
[15] C.-K. Chen and S.-P. Ju, “Application of differential transformation to transient advective-dispersive transport equation,” Applied Mathematics and Computation, vol. 155, no. 1, pp. 25-38, 2004. · Zbl 1053.76055 · doi:10.1016/S0096-3003(03)00755-0
[16] B. Jang, “Solving linear and nonlinear initial value problems by the projected differential transform method,” Computer Physics Communications, vol. 181, no. 5, pp. 848-854, 2010. · Zbl 1205.65205 · doi:10.1016/j.cpc.2009.12.020
[17] I. H. Hassan, “On solving some eigenvalue problems by using a differential transformation,” Applied Mathematics and Computation, vol. 127, no. 1, pp. 1-22, 2002. · Zbl 1030.34028 · doi:10.1016/S0096-3003(00)00123-5
[18] A. A. Joneidi, D. D. Ganji, and M. Babaelahi, “Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 757-762, 2009. · doi:10.1016/j.icheatmasstransfer.2009.03.020