zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributed tracking control of leader-follower multi-agent systems under noisy measurement. (English) Zbl 1204.93011
Summary: A distributed tracking control scheme with distributed estimators has been developed for a leader-follower multi-agent system with measurement noises and directed interconnection topology. It is supposed that each follower can only measure the relative positions of its neighbors in a noisy environment, including the relative position of the second-order active leader. A neighbor-based tracking protocol together with distributed estimators is designed based on a novel velocity decomposition technique. It is shown that the closed loop tracking control system is stochastically stable in mean square and the estimation errors converge to zero in mean square as well. A simulation example is finally given to illustrate the performance of the proposed control scheme.

93A14Decentralized systems
93E15Stochastic stability
93E10Estimation and detection in stochastic control
94C15Applications of graph theory to circuits and networks
Full Text: DOI arXiv
[1] Anderson, B. D. O.; Fidan, B.; Yu, C.; Walle, D.: UAV formation control: theory and application, Lecture notes in control and information sciences 371, 15-33 (2008) · Zbl 1201.93089 · doi:10.1007/978-1-84800-155-8_2
[2] Chow, Y. S.; Teicher, H.: Probability theory: independence, interchangeability, martingales, (1997) · Zbl 0891.60002
[3] Das, A. K.; Fierro, R.; Kumar, V.: A vision-based formation control framework, IEEE robotics and automation society 18, No. 5, 813-825 (2002)
[4] Fax, A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[5] Friedman, A.: Stochastic differential equations and applications: vol. 1, (1975) · Zbl 0323.60056
[6] Godsil, C.; Royle, G.: Algebraic graph theory, (2001) · Zbl 0968.05002
[7] Gupta, H., Cao, X., & Haering, N. (2008). Map-based active leader--follower surveillance system. In Proc. of ECCV workshop on multi-camera and multi-modal sensor fusion algorithms and applications, Marseille, France.
[8] Hong, Y.; Hu, J.; Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology, Automatica 42, No. 7, 1177-1182 (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[9] Hu, J.; Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays, Physica A 374, No. 2, 853-863 (2007)
[10] Hu, J.; Hu, X.: Optimal target trajectory estimation and filtering using networked sensors, Journal of systems science & complexity 21, 325-336 (2008) · Zbl 1173.93377
[11] Huang, M.; Manton, J. H.: Coordination and consensus of networked agents with noisy measurement: stochastic algorithms and asymptotic behavior, SIAM journal on control and optimization 48, No. 1, 134-161 (2009) · Zbl 1182.93108 · doi:10.1137/06067359X
[12] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[13] Lin, Z.; Francis, B.; Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles, IEEE transactions on automatic control 50, No. 1, 121-127 (2005)
[14] Lin, P.; Jia, Y.; Du, J.; Yuan, S.: Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications, Asian journal of control 10, No. 2, 254-259 (2008)
[15] Li, T.; Zhang, J. F.: Mean square average consensus under measurement noises and fixed topologies: necessary and sufficient conditions, Automatica 45, No. 8, 1929-1936 (2009) · Zbl 1185.93006 · doi:10.1016/j.automatica.2009.04.017
[16] Michel, A. N.; Miller, R. K.: Qualitative analysis of large scale dynamical systems, (1977) · Zbl 0494.93002
[17] Nevelson, M. B.; Hasminskii, R. Z.: Stochastic approximation and recursive estimation, (1976)
[18] Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, No. 5, 655-661 (2005)
[19] Shi, G.; Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies, Automatica 45, No. 5, 1165-1175 (2009) · Zbl 1162.93308 · doi:10.1016/j.automatica.2008.12.015
[20] Vanek, B., Peni, T., Bokor, J., & Balas, G. (2005). Practical approach to real-time trajectory tracking of UAV formations. In Proc. of American control conference, Oregon (pp. 122--127).
[21] Wang, P. K. C.: Navigation strategies for multiple autonomous mobile robots moving in formation, Journal of robotic systems 8, No. 2, 177-195 (1991) · Zbl 0716.70035 · doi:10.1002/rob.4620080204