zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay robustness in consensus problems. (English) Zbl 1204.93013
Summary: We investigate the robustness of consensus schemes for linear Multi-Agent Systems (MAS) to feedback delays. To achieve this, we develop a unified framework that considers linear MAS models with different feedback delays, e.g. affecting only the neighbor’s output, or affecting both the agent’s own and its neighbors’ output. This framework has the advantage of providing scalable, simple, and accurate set-valued conditions for consensus. Using these set-valued conditions, previous results on consensus in MAS with delays can be recovered and generalized. Moreover, we use them to derive conditions for the convergence rate of single integrator MAS with feedback delays. Finally, building on this framework, we propose a scalable delay-dependent design algorithm for consensus controllers for a large class of linear MAS.

MSC:
93A14Decentralized systems
93C05Linear control systems
93B52Feedback control
93B35Sensitivity (robustness) of control systems
Software:
TRACE-DDE
WorldCat.org
Full Text: DOI
References:
[1] Bliman, P. -A.; Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications, Automatica 44, No. 8, 1985-1995 (2008) · Zbl 1283.93013
[2] Brackstone, M.; Mcdonald, M.: Car-following: a historical review, Transporation research part F 2, No. 4, 181-196 (1999)
[3] Breda, D., Vermiglio, R., & Maset, S. (2006). Tool for robust analysis and characteristic equation of delay differential equations (trace-dde). Available from: http://www.dimi.uniud.it/dbreda/traceDDE.html. · Zbl 1099.65064
[4] Cao, M.; Morse, A. S.; Anderson, B. D. O.: Reaching a consensus in a dynamically changing environment: a graphical approach & convergence ranges, measurement delays, and asynchronous events, SIAM journal on control and optimization 47, No. 2, 575-623 (2008) · Zbl 1157.93514 · doi:10.1137/060657005
[5] Carli, R.; Bullo, F.: Quantized coordination algorithms for rendezvous and deployment, SIAM journal on control and optimization 48, No. 3, 1251-1274 (2009) · Zbl 1192.68845 · doi:10.1137/070709906
[6] Chopra, N.; Spong, M.: Passivity-based control of multi-agent systems, Advances in robot control, 107-134 (2006) · Zbl 1134.93308
[7] Chopra, N., Stipanović, D. M., & Spong, M. W. (2008). On synchronization and collision avoidance for mechanical systems. In Proc. Amer. Contr. Conf. (pp. 3713--3718). Seattle, USA.
[8] Desoer, C. A.; Wang, Y. -T.: On the generalized Nyquist stability criterion, IEEE transactions on automatic control 25, No. 2, 187-196 (1980) · Zbl 0432.93039 · doi:10.1109/TAC.1980.1102280
[9] Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[10] Fiedler, Miroslav: Algebraic connectivity of graphs, Czechoslovak mathematical journal 23, No. 2, 298-305 (1973) · Zbl 0265.05119
[11] Ghabcheloo, R., Aguiar, A. P., Pascoal, A., & Silvestre, C. (2007). Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays. In Proc. IEEE Conf. Decision Contr. (pp. 2327--2332). New Orleans, USA.
[12] Godsil, C.; Royle, G.: Algebraic graph theory, (2000) · Zbl 0968.05002
[13] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[14] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985) · Zbl 0576.15001
[15] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis, (1991) · Zbl 0729.15001
[16] Jacobsson, K., Andrew, L. L. H., & Tang, A. (2009). Stability and robustness conditions using frequency dependent half planes. In Proc. IEEE Conf. Decision Contr.(pp. 6166--6171). Shanghai, China.
[17] Jönsson, U. T., & Kao, C. -Y. (2009). A scalable robust stability criterion for systems with heterogeneous LTI components. In Proc. Amer. Contr. Conf.(pp. 2898--2903). St. Louis, USA.
[18] Kao, C. -Y.; Jönsson, U.; Fujioka, H.: Characterization of robust stability of a class of interconnected systems, Automatica 45, No. 1, 217-224 (2009) · Zbl 1154.93409 · doi:10.1016/j.automatica.2008.06.021
[19] Kashyap, A.; Başar, T.; Srikant, R.: Quantized consensus, Automatica 43, No. 7, 1192-1203 (2007) · Zbl 1123.93090 · doi:10.1016/j.automatica.2007.01.002
[20] Lee, D., & Spong, M. W. (2006). Agreement with non-uniform information delays. In Proc. Amer. Contr. Conf. (pp. 756--761). Minneapolis, USA.
[21] Lestas, I. C.; Vinnicombe, G.: Scalable decentralized robust stability certificates for networks of interconnected heterogeneous dynamical systems, IEEE transactions on automatic control 51, No. 10, 1613-1625 (2006)
[22] Lestas, I. C., & Vinnicombe, G. (2007). The S-hull approach to consensus. In Proc. IEEE Conf. Decision Contr. (pp. 182--187). New Orleans, USA.
[23] Lestas, I. C.; Vinnicombe, G.: Scalable robust stability for nonsymmetric heterogeneous networks, Automatica 43, No. 4, 714-723 (2007) · Zbl 1131.93040 · doi:10.1016/j.automatica.2006.10.018
[24] Liu, C. -L., & Tian, Y. -P. (2007). Consensus of multi-agent system with diverse communication delays. In Proc. Chin. Contr. Conf. (pp. 726--730). Zhangjiajie, Hunan, China.
[25] Liu, C. -L., & Tian, Y. -P. (2008). Coordination of multi-agent systems with communication delays. In Proc. IFAC World Congress (pp. 10782--10787). Seoul, South Korea.
[26] Moreau, L. (2004). Stability of continuous-time distributed consensus algorithms. In Proc. IEEE Conf. Decision Contr. (pp. 3998--4003). Atlantis, USA.
[27] Mossaheb, S.: A Nyquist type stability criterion for linear multivariable delayed systems, International journal of control 32, No. 5, 821-847 (1980) · Zbl 0461.93049 · doi:10.1080/00207178008922893
[28] Münz, U. (2010). Delay robustness in cooperative control. Ph.D. thesis. University of Stuttgart, Germany (submitted for publication).
[29] Münz, U., Papachristodoulou, A., & Allgöwer, F. (2008). Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays. In Proc. IEEE Conf. Decision Contr. (pp. 2038--2043). Cancun, Mexico.
[30] Münz, U.; Papachristodoulou, A.; Allgöwer, F.: Consensus reaching in multi-agent packet-switched networks, International journal of control 82, No. 5, 953-969 (2009) · Zbl 1165.93025 · doi:10.1080/00207170802398018
[31] Münz, U., Papachristodoulou, A., & Allgöwer, F. (2009b). Generalized Nyquist consensus condition for large linear multi-agent systems with communication delays. In Proc. IEEE Conf. Decision Contr. (pp. 4765--4771). Shanghai, China.
[32] Münz, U., Papachristodoulou, A., & Allgöwer, F. (2009c). Generalized Nyquist consensus condition for linear multi-agent systems with heterogeneous delays. In Proc. IFAC Workshop on Estimation and Control of Networked Systems(pp. 24--29). Venice, Italy.
[33] Münz, U.; Papachristodoulou, A.; Allgöwer, F.: Robust rendezvous of heterogeneous langrange systems on packet-switched networks, Automatisierungstechnik 58, No. 4, 184-191 (2010)
[34] Nedić, A., & Ozdaglar, A. (2009). Convergence rate for consensus with delays. Journal of Global Optimization, in press (doi:10.1007/s10898-008-9370-2). · Zbl 1214.93012
[35] Olfati-Saber, R. (2005). Ultrafast consensus in small-world networks. In Proc. Amer. Contr. Conf. (pp. 2371--2378). Portland, USA.
[36] Olfati-Saber, R.; Fax, J. A.; Murray, R. M.: Consensus and cooperation in networked multi-agent systems, Proceedings of IEEE 95, No. 1, 215-233 (2007)
[37] Olfati-Saber, R.; Murray, R. M.: Consensus problem in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[38] Papachristodoulou, A., Jadbabaie, A., & Münz, U. Effects of delay in multi-agent consensus and oscillator synchronization. IEEE Transactions on Automatic Control (in press).
[39] Ren, W.; Beard, R. W.: Distributed consensus in multi-vehicle cooperative control, (2008) · Zbl 1144.93002
[40] Sipahi, R., & Niculescu, S. -I. (2007). A survey of deterministic time delay traffic flow models. In Proc. IFAC Workshop on Time-Delay Systems. Nantes, France.
[41] Skogestad, S.; Postlethwaite, I.: Multivariable feedback control analysis and design, (2004) · Zbl 0883.93001
[42] Sun, Y. G.; Wang, L.: Consensus of multi-agent systems in directed networks with nonuniform time-varying delays, IEEE transactions on automatic control 54, No. 7, 1607-1613 (2009)
[43] Sun, Y. G.; Wang, L.: Consensus problems in networks of agents with double-integrator dynamics and time-varying delays, International journal of control 82, No. 10, 1937-1945 (2009) · Zbl 1178.93013 · doi:10.1080/00207170902838269
[44] Tian, Y. -P.; Liu, C. -L.: Consensus of multi-agent systems with diverse input and communication delays, IEEE transactions on automatic control 53, No. 9, 2122-2128 (2008)
[45] Toker, O.; Özbay, H.: Complexity issues in robust stability of linear differential systems, Mathematics of control, signals, and systems 9, No. 4, 386-400 (1996) · Zbl 0878.93050 · doi:10.1007/BF01211858
[46] Wang, J., & Elia, N. (2008). Consensus over networks with dynamic channels. In Proc. Amer. Contr. Conf. (pp. 2637--2642). Seattle, USA.
[47] Wieland, P., Kim, J.-S., Scheu, H., & Allgöwer, F. (2008). On consensus in multi-agent systems with linear high-order agents. In Proc. IFAC World Congress(pp. 1541--1546). Seoul, South Korea.
[48] Xiao, F.; Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE transactions on automatic control 53, No. 8, 1804-1816 (2008)
[49] Xiao, F.; Wang, L.: Consensus protocols for discrete-time multi-agent systems with time-varying delays, Automatica 44, No. 10, 2577-2582 (2008) · Zbl 1155.93312 · doi:10.1016/j.automatica.2008.02.017
[50] Yang, W., Bertozzi, A., & Wang, X. (2008). Stability of a second order consensus algorithm with time delay. In Proc. IEEE Conf. Decision Contr. (pp. 2962--2931). Cancun, Mexico.