zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal fault detection for linear discrete time-varying systems. (English) Zbl 1204.93078
Summary: This paper deals with the problem of observer-based fault detection for Linear Discrete Time-Varying (LDTV) systems. A problem formulation is first proposed to address the optimization of the Fault Detection Filter (FDF) design, which is expressed in terms of maximizing a finite horizon $H_\infty/H_\infty$ or $H_-/H_\infty$ performance index. This formulation can be applied to FDF design of LDTV systems subject to $l_{2}$-norm bounded unknown inputs or stochastic noise sequences. It is shown that a unified optimal solution to the FDF can be obtained by solving the discrete time Riccati equation and the optimal FDF is not unique. A numerical example is given to illustrate the proposed method.

MSC:
93C55Discrete-time control systems
93C05Linear control systems
93D05Lyapunov and other classical stabilities of control systems
WorldCat.org
Full Text: DOI
References:
[1] Anderson, B. D. O.; Moore, J. B.: Detectability and stabilizability of time-varying discrete-time linear systems, SIAM journal on control and optimization 19, 20-32 (1981) · Zbl 0468.93051 · doi:10.1137/0319002
[2] Casavola, A.; Famularo, D.; Franze, G.: Robust fault detection of uncertain linear systems via quasi-lmis, Automatica 44, 289-295 (2008) · Zbl 1138.93417 · doi:10.1016/j.automatica.2007.05.010
[3] Chen, J.; Patton, R. J.: Robust model-based fault diagnosis for dynamic systems, (1999) · Zbl 0920.93001
[4] Ding, S. X.: Model-based fault diagnosis techniques, (2008)
[5] Ding, S. X.; Jeinsch, T.; Frank, P. M.; Ding, E. L.: A unified approach to the optimization of fault detection systems, International journal of adaptive control and signal processing 14, 725-745 (2000) · Zbl 0983.93016 · doi:10.1002/1099-1115(200011)14:7<725::AID-ACS618>3.0.CO;2-Q
[6] Ding, S. X., Zhong, M., &amp; Tang, B. (2001). An LMI approach to the design of fault detection filter for time-delay LTI systems with unknown inputs. In Proc. Amer. contr. conf. Arlington, VA (pp. 2137-2142).
[7] Frank, P. M.; Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of process control 7, 403-424 (1997)
[8] Gertler, J.: Fault detection and diagnosis in engineering systems, (1998)
[9] Henry, D.; Zolghadri, A.: Norm-based design of robust FDI schemes for uncertain systems under feedback control: comparison of two approaches, Control engineering practice 14, 1081-1097 (2006)
[10] Izadi, I.; Zhao, Q.; Chen, T.: Analysis of performance criteria in sampled-data fault detection, Systems & control letters 56, 320-325 (2007) · Zbl 1112.93048 · doi:10.1016/j.sysconle.2006.10.019
[11] Li, X. (2009). Fault detection filter design for linear systems. In Ph.D. dissertation. Louisiana State University, USA, (pp. 66-82).
[12] Liu, N., &amp; Zhou, K. (2007). Optimal robust fault detection for linear discrete time systems. In Proc. 46th IEEE conf. decis. contr. New Orleans, USA (pp. 989-994).
[13] Li, X.; Zhou, K.: A time domain approach to robust fault detection of linear time-varying systems, Automatica 45, 94-102 (2009) · Zbl 1154.93341 · doi:10.1016/j.automatica.2008.07.017
[14] Wang, J.; Yang, G.; Liu, J.: An LMI approach to H- index and mixed H-/H$\infty $fault detection observer design, Automatica 43, 1656-1665 (2007) · Zbl 1128.93321 · doi:10.1016/j.automatica.2007.02.019
[15] Zhang, P.; Ding, S. X.: Observer-based fault detection of linear time-varying systems, Automatisierungstechnik 52, 370-376 (2004)
[16] Zhang, P.; Ding, S. X.; Wang, G.; Zhou, D.: Fault detection of linear discrete-time periodic systems, IEEE transactions on automatic control 50, 239-244 (2005)
[17] Zhang, P.; Ding, S. X.; Wang, G.; Zhou, D.: Disturbance decoupling in fault detection of linear periodic systems, Automatica 43, 1410-1417 (2007) · Zbl 1130.93377 · doi:10.1016/j.automatica.2007.01.005
[18] Zhong, M.; Ding, S. X.; Lam, J.; Wang, H.: LMI approach to design robust fault detection filter for uncertain LTI systems, Automatica 39, 543-550 (2003) · Zbl 1036.93061 · doi:10.1016/S0005-1098(02)00269-8
[19] Zhong, M.; Liu, S.; Zhao, H.: Krein space-based H$\infty $fault estimation for linear discrete time-varying systems, ACTA automatica sinica 34, 1529-1533 (2008) · Zbl 1199.93189 · doi:10.3724/SP.J.1004.2008.01529