×

zbMATH — the first resource for mathematics

Rational approximation of maximal commutative subgroups of \(\mathrm{GL}(n,\mathbb R){\mathrm{GL}(n,\mathbb{R})}\). (English) Zbl 1205.11084
Summary: How to find “best rational approximations” of maximal commutative subgroups of \(\mathrm{GL}(n,\mathbb{R})\)? In this paper we specify this problem and make first steps in its study. It contains the classical problems of Diophantine and simultaneous approximation as particular subcases but in general is much wider. We prove estimates for \(n = 2\) for both totally real and complex cases and give an algorithm to construct best approximations of a fixed size. In addition we introduce a relation between best approximations and sails of cones and interpret the result for totally real subgroups in geometric terms of sails.
MSC:
11J13 Simultaneous homogeneous approximation, linear forms
11K60 Diophantine approximation in probabilistic number theory
11J70 Continued fractions and generalizations
20H20 Other matrix groups over fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. L. Adler and L. Flatto, Cross section maps for geodesic flows. I. The modular surface. In: Ergodic Theory and Dynamical Systems, II (College Park, MD, 1979/1980), Progr. Math. 21, Birkhäuser, Boston, 1982, 103–161.
[2] Arnold V.I.: A-graded algebras and continued fractions. Comm. Pure Appl. Math. 142, 993–1000 (1989) · Zbl 0692.16012 · doi:10.1002/cpa.3160420705
[3] Arnold V.I.: Higher dimensional continued fractions. Regul. Chaotic Dynam. 3, 10–17 (1998) · Zbl 1044.11596 · doi:10.1070/rd1998v003n03ABEH000076
[4] V. I. Arnold, Continued Fractions. Moscow Center of Continuous Mathematical Education, 2002.
[5] M. O. Avdeeva, On statistics of incomplete quotients of finite continued fractions. Funktsional. Anal. i Prilozhen. 38 (2004), no. 2, 1–11 (in Russian). · Zbl 1205.11089
[6] M. O. Avdeeva and V. A. Bykovskiĭ, Solution of Arnold’s problem on Gauss–Kuzmin statistics. Preprint, Vladivostok, 2002.
[7] A. D. Bryuno and V. I. Parusnikov, Klein polyhedrals for two cubic Davenport forms. Mat. Zametki 56 (1994), no. 4, 9–27 (in Russian). · Zbl 0844.11047
[8] Buchmann J.A.: A generalization of Voronoi’s algorithm I, II. J. Number Theory 20, 177–209 (1985) · Zbl 0575.12005 · doi:10.1016/0022-314X(85)90039-3
[9] V. A. Bykovskiĭ, Relative minima of lattices, and vertices of Klein polyhedra. Funktsional. Anal. i Prilozhen. 40 (2006), no. 1, 56–57 (in Russian)
[10] Davenport H.: On the product of three homogeneous linear forms, I. Proc. London Math. Soc. 13, 139–145 (1938) · Zbl 0018.29503 · doi:10.1112/jlms/s1-13.2.139
[11] Davenport H.: Note on the product of three homogeneous linear forms. J. London Math. Soc. 16, 98–101 (1941) · Zbl 0028.34803 · doi:10.1112/jlms/s1-16.2.98
[12] Davenport H.: On the product of three homogeneous linear forms. IV. Proc. Cambridge Philos. Soc. 39, 1–21 (1943) · Zbl 0060.11913 · doi:10.1017/S030500410001762X
[13] O. N. German and E. L. Lakshtanov, On a multidimensional generalization of Lagrange’s theorem for continued fractions. Izv. Ross. Akad. Nauk Ser. Mat. 2008, no. 1, 51–66 (in Russian). · Zbl 1180.11022
[14] O. Karpenkov, On tori decompositions associated with two-dimensional continued fractions of cubic irrationalities. Funktsional. Anal. i Prilozhen. 38 (2004), no. 2, 28–37 (in Russian). · Zbl 1125.11042
[15] O. Karpenkov, On two-dimensional continued fractions for integer hyperbolic matrices with small norm. Uspekhi Mat. Nauk 59 (2004), no. 5, 149–150 (in Russian). · Zbl 1160.11336
[16] Karpenkov O.: Three examples of three-dimensional continued fractions in the sense of Klein. C. R. Math. Acad. Sci. Paris 343, 5–7 (2006) · Zbl 1102.11007
[17] Karpenkov O.: Completely empty pyramids on integer lattices and twodimensional faces of multidimensional continued fractions. Monatsh. Math. 152, 217–249 (2007) · Zbl 1167.11025 · doi:10.1007/s00605-007-0478-0
[18] O. Karpenkov, On invariant Möbius measure and Gauss–Kuzmin face distribution. Proc. Steklov Inst. Math. 258 (2007), 74–86; http://arxiv.org/abs/math.NT/0610042 . · Zbl 1245.52006
[19] Karpenkov O.: Elementary notions of lattice trigonometry. Math. Scand. 102, 161–205 (2008) · Zbl 1155.11035
[20] Karpenkov O.N.: Constructing multidimensional periodic continued fractions in the sense of Klein. Math. Comp. 78, 1687–1711 (2009) · Zbl 1215.11069 · doi:10.1090/S0025-5718-08-02187-X
[21] O. Karpenkov, Integer conjugacy classes of \({SL(3, \mathbb{Z})}\) and Hessenberg matrices. 2007; http://arxiv.org/abs/0711.0830 .
[22] A. Ya. Khinchin, Continued Fractions. 4-th ed., Nauka, Moscow, 1978 (in Russian); English transl., Dover Publ., Mineola, NY, 1997.
[23] F. Klein, Ueber eine geometrische Auffassung der gewöhnliche Kettenbruchentwickelung. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1895, 357–359. · JFM 26.0229.02
[24] Kontsevich M.L., Sukhov Yu.M.: Statistics of Klein polyhedra and multidimensional continued fractions. Amer. Math. Soc. Transl. 197(2), 9–27 (1999) · Zbl 0945.11012
[25] E. I. Korkina, La périodicité des fractions continues multidimensionnelles. C. R. Acad. Sci. Paris 319 (1994), 778–730.
[26] E. I. Korkina, Two-dimensional continued fractions. The simplest examples. Trudy Mat. Inst. Steklov. 209 (1995), 143–166 (in Russian).
[27] Korkina E.I.: The simplest 2-dimensional continued fraction. J. Math. Sci. 82, 3680–3685 (1996) · Zbl 0901.11003 · doi:10.1007/BF02362573
[28] R. O. Kuz’min, On a problem of Gauss. Dokl. Akad. Nauk SSSR Ser. A (1928), 375–380.
[29] G. Lachaud, Voiles et polyèdres de Klein. Act. Sci. Ind., Hermann, 2002.
[30] Lagarias J.C.: Best simultaneous Diophantine approximations. I. Growth rates of best approximation denominators. Trans. Amer. Math. Soc. 272, 545–554 (1982) · Zbl 0495.10021
[31] Markoff A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15, 381–409 (1879) · JFM 11.0147.01 · doi:10.1007/BF02086269
[32] Minkowski H.: Généralisation de la théorie des fractions continues. Ann. Sci. École Norm. Sup. (3) 33, 1057–1070 (1896)
[33] J.-O. Moussafir, Voiles et polyèdres de Klein: géométrie, algorithmes et statistiques. Docteur ès sciences thése, Université Paris IX, 2000; http://www.ceremade.dauphige.fr/\(\sim\)msfr/
[34] Perron O.: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, 1–76 (1907) · JFM 38.0262.01 · doi:10.1007/BF01449880
[35] Schweiger F.: Multidimensional Continued Fractions. Oxford Sci. Publ., Oxford Univ. Press, Oxford (2000) · Zbl 0981.11029
[36] Series C.: The modular surface and continued fractions. J. London Math. Soc. (2) 31, 69–80 (1985) · Zbl 0564.30006 · doi:10.1112/jlms/s2-31.1.69
[37] Tsuchihashi H.: Higher dimensional analogues of periodic continued fractions and cusp singularities. Tohoku Math. J. 35, 176–193 (1983) · Zbl 0585.14004 · doi:10.2748/tmj/1178228955
[38] A. Vershik. Statistical mechanics of combinatorial partitions, and their limit configurations. Funktsional. Anal. i Prilozhen. 30, no. 2, 90–105 (1996) (in Russian). · Zbl 0868.05004
[39] G. F. Voronoy, On a generalization of the algorithm of continued fractions. Izd. Varsh. Univ., Warszawa, 1896; also in: Collected Works in 3 Volumes, Vol. 1, Izd. Akad. Nauk Ukrain. SSSR, Kiev, 1952 (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.