zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives. (English) Zbl 1205.34048
Summary: We study an eco-epidemiological model where the prey disease is modeled by a Susceptible-Infected (SI) scheme. Saturation incidence kinetics is used to model the contact process. The predator population switches among susceptible and infected prey. The prey species is supposed to be commercially viable and undergo constant non-selective harvesting. We study the stability aspects of the basic and the switching models around the infection-free state and the infected steady state from a local as well as a global perspective. Our aim is to study the role of harvesting and switching on the dynamics of disease propagation and/or eradication. A comparison of the local and global dynamical behavior in terms of important system parameters is obtained. Numerical simulations are done to illustrate the analytical results.

34C60Qualitative investigation and simulation of models (ODE)
34D20Stability of ODE
34D30Structural stability of ODE and analogous concepts
Full Text: DOI
[1] Anderson, R. M.; May, R. M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. trans. R. soc. Lond. 314, 533-570 (1986)
[2] Hadeler, K. P.; Freedman, H. I.: Predator--prey populations with parasite infection. J. math. Biol. 27, 609-631 (1989) · Zbl 0716.92021
[3] Venturino, E.: Epidemics in predator--prey models: diseases in the prey. Mathematical population dynamics: analysis of heterogeneity, vol. 1, theory of epidemics 1, 381-393 (1995)
[4] Chattopadhyay, J.; Arino, O.: A predator--prey model with disease in the prey. Nonlinear anal. 36, 747-766 (1999) · Zbl 0922.34036
[5] Chattopadhyay, J.; Bairagi, N.: Pelicans at risk in salton sea--an eco-epidemiological study. Ecol. model. 136, 103-112 (2001)
[6] Xiao, Y.; Chen, L.: Modeling and analysis of a predator--prey model with disease in the prey. Math. biosci. 171, 59-82 (2001) · Zbl 0978.92031
[7] Venturino, E.: Epidemics in predator--prey models: disease in the predator. IMA J. Math. appl. Med. biol. 19, 185-205 (2002) · Zbl 1014.92036
[8] Hethcote, H. W.; Wang, W.; Han, L.; Ma, Z.: A predator--prey model with infected prey. Theor. popul. Biol. 66, 259-268 (2004)
[9] Hall, S. R.; Duffy, M. A.; Caceres, C. E.: Selective predation and productivity jointly drive complex behavior in host-parasite systems. Amer. nat. 165, No. 1, 70-81 (2005)
[10] Mukhopadhyay, B.; Bhattacharyya, R.: Dynamics of a delayed epidemiological model with nonlinear incidence: the role of infected incidence fraction. J. biol. Syst. 13, No. 4, 341-361 (2005) · Zbl 1099.92067
[11] Fenton, A.; Rands, S. A.: The impact of parasite manipulation and predator foraging behavior on predator--prey communities. Ecology 87, No. 11, 2832-2841 (2006)
[12] Bairagi, N.; Roy, P. K.; Chattopadhyay, J.: Role of infection on the stability of a predator--prey system with several functional responses--A comparative study. J. theoret. Biol. 248, 10-25 (2007)
[13] Mena-Lorca, J.; Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population sizes. J. math. Biol. 30, 693-716 (1992) · Zbl 0748.92012
[14] Haque, M.; Chattopadhyay, J.: Role of transmissible disease in an infected prey-dependent predator--prey system. Math. comput. Model. dyn. Syst. 13, 163-178 (2007) · Zbl 1135.93003
[15] Han, L.; Ma, Z.; Hethcote, H. W.: Four predator prey models with infectious diseases. Math. comput. Modelling 34, 849-858 (2001) · Zbl 0999.92032
[16] Hilker, F. M.; Malchow, H.: Strange periodic attractors in a prey--predator system with infected prey. Math. popul. Stud. 13, 119-134 (2006) · Zbl 1157.92324
[17] Temple, S. A.: Do predators always capture substandard individuals disproportionately from prey population?. Ecology 68, 669-674 (1987)
[18] Moore, J.: Parasites and the behaviour of animals. (2002)
[19] Peterson, R. O.; Page, R. E.: The rise and fall of isle royale wolves, 1975--1986. J. mamm. 69, No. 1, 89-99 (1988)
[20] Mech, L. D.: The wolf. (1970)
[21] Schaller, G. B.: The serengeti lion: A study of predator prey relations. (1972)
[22] Lafferty, K. D.; Morris, A. K.: Altered behavior of parasitized killfish increases susceptibility to predation by bird final hosts. Ecology 77, 1390-1397 (1996)
[23] Mukhopadhyay, B.; Bhattacharyya, R.: Role of predator switching in an eco-epidemiological model with disease in the prey. Ecol. model. 220, 931-939 (2009)
[24] Holling, C. S.: Principles of insect predation. Ann. rev. Entomol. 6, 163-182 (1961)
[25] May, R. M.: Some mathematical problems in biology, vol. 4. (1974)
[26] Murdoch, W. W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. mong. 39, 355-364 (1969)
[27] Tansky, M.: Switching effects in prey--predator system. J. theoret. Biol. 70, 263-271 (1978)
[28] Khan, Q. A. J.; Balakrishnan, E.; Wake, G. C.: Analysis of a predator--prey system with predator switching. Bull. math. Biol. 66, 109-123 (2004)
[29] Bhattacharyya, R.; Mukhopadhyay, B.: Spatial dynamics of nonlinear prey--predator models with prey migration and predator switching. Ecol. complex. 3, 160-169 (2006)
[30] Malchow, H.; Hilker, F. M.; Sarkar, R. R.; Brauer, K.: Spatiotemporal patterns in an excitable plankton system with lysogenic viral infections. Math. comput. Modelling 42, 1035-1048 (2005) · Zbl 1080.92066
[31] Mukhopadhyay, B.; Bhattacharyya, R.: Bifurcation analysis of an ecological food-chain model with switching predator. Appl. math. Comput. 201, 260-271 (2008) · Zbl 1143.92039
[32] Clark, C. W.: Bioeconomic modelling and fisheries management. (1985)
[33] Clark, C. W.: The optimal management of renewable resources: mathematical bioeconomics. (1990) · Zbl 0712.90018
[34] Cohn, J. P.: Saving the salton sea. Biosciences 50, No. 4, 295-301 (2000)
[35] Costa, M. I. S.: Harvesting induced fluctuations: insights from a thresholds management policy. Math. biosci. 205, 77-82 (2007) · Zbl 1106.92069
[36] Jonzen, N.; Ranta, E.; Lundberg, P.; Kaitala, V.; Linden, H.: Harvesting induced fluctuations?. Wildlife biol. 9, 59-65 (2003)
[37] Brauer, F.; Soudack, A. C.: Stability regions and transition phenomena for harvested predator--prey systems. J. math. Biol. 7, 319-337 (1979) · Zbl 0397.92019
[38] Brauer, F.; Soudack, A. C.: Stability regions in predator--prey systems with constant rate prey harvesting. J. math. Biol. 8, 55-71 (1979) · Zbl 0406.92020
[39] Chaudhuri, K. S.: A bio-economic model of harvesting a multispecies fishery. Ecol. model. 32, 267-279 (1986)
[40] Chaudhuri, K. S.; Roy, S. Saha: On the combined harvesting of a prey--predator system. J. biol. Syst. 4, No. 3, 373-389 (1996)
[41] Goh, B. S.; Leitmann, G.; Vincent, T. L.: Optimal control of a prey--predator system. Math. biosci. 19, 263-286 (1974) · Zbl 0297.92013
[42] Ianelli, J.; Lamberson, R. H.: History and future of models in fisheries science. Nat. resour. Model. 16, No. 4, 1-5 (2003)
[43] Martin, A.; Ruan, S.: Predator--prey models with delay and prey harvesting. J. math. Biol. 43, 247-267 (2001) · Zbl 1008.34066
[44] Mesterton-Gibbons, M.: On the optimal policy for combined harvesting of predator and prey. Nat. resour. Model. 3, 63-89 (1988) · Zbl 0850.92067
[45] Mesterton-Gibbons, M.: A technique for finding optimal two-species harvesting policies. Nat. resour. Model. 92, 235-244 (1996)
[46] Xiao, D.; Jennings, L. S.: Bifurcations of a ratio-dependent predator--prey system with constant rate harvesting. SIAM J. Appl. math. 65, No. 3, 737-753 (2005) · Zbl 1094.34024
[47] Dobson, A. P.; May, R. M.: The effects of parasites on fish populations--theoretical aspects. Int. J. Parasitol. 17, 363-370 (1987)
[48] Mccallum, H.; Gerber, L.; Jani, A.: Does infectious diseases influence the efficacy of marine protected areas? A theoretical framework. J. appl. Ecol. 42, 688-698 (2005)
[49] Culver, C. S.; Kuris, A. M.: The apparent eradication of a locally established introduced marine pest. Biol. invasion 2, 245-253 (2000)
[50] Bairagi, N.; Chaudhuri, S.; Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system--A theoretical study. Math. biosci. 217, 134-144 (2009) · Zbl 1157.92030
[51] Hale, J. K.: Ordinary differential equations. (1969) · Zbl 0186.40901