×

Lyapunov inequality for elliptic equations involving limiting nonlinearities. (English) Zbl 1205.35070

Summary: This note deals with a generalization of the famous Lyapunov inequality giving a necessary condition for the existence of solutions to a boundary value problem for an ordinary differential equation. The problem we consider is closely related to a well-known problem on an asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly critical Sobolev growth.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35B33 Critical exponents in context of PDEs
35J62 Quasilinear elliptic equations
Full Text: DOI

References:

[1] F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1987), no. 3, 349-365. · Zbl 0657.35058 · doi:10.1016/0022-0396(87)90156-2
[2] H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, in Partial differential equations and the calculus of variations, Vol. I , 149-192, Birkhäuser, Boston, Boston, MA. · Zbl 0685.35013 · doi:10.1007/978-1-4684-9196-8_7
[3] J. Byeon, H. J. Kweon and S. A. Timoshin, Generalized Lyapunov inequalities involving critical Sobolev exponents. (Preprint).
[4] A. Cañada, J. A. Montero and S. Villegas, Liapunov-type inequalities and Neumann boundary value problems at resonance, Math. Inequal. Appl. 8 (2005), no. 3, 459-475. · Zbl 1085.34014
[5] A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), no. 1, 176-193. · Zbl 1254.35069 · doi:10.1016/j.jfa.2005.12.011
[6] D. Cao and X. Zhong, Multiplicity of positive solutions for semilinear elliptic equations involving the critical Sobolev exponents, Nonlinear Anal. 29 (1997), no. 4, 461-483. · Zbl 0879.35055 · doi:10.1016/S0362-546X(96)00051-X
[7] J. F. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), no. 5, 623-657. · Zbl 0635.35033 · doi:10.1002/cpa.3160400507
[8] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 2, 159-174. · Zbl 0729.35014
[9] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[10] A. M. Lyapunov, Problème général de la stabilité du mouvement. Ann. de la Faculté de Toulouse (2) 9 (1907), 406. · JFM 38.0738.07
[11] S. I. Pohožaev, On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\), Dokl. Akad. Nauk SSSR 165 (1965), 36-39. (in Russian) and Soviet Math. Dokl. 6 (1965), 1408-1411. · Zbl 0141.30202
[12] O. Rey, Proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65 (1989), no. 1, 19-37. · Zbl 0708.35032 · doi:10.1007/BF01168364
[13] O. Rey, The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1-52. · Zbl 0786.35059 · doi:10.1016/0022-1236(90)90002-3
[14] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511-517. · Zbl 0535.35025 · doi:10.1007/BF01174186
[15] M. Struwe, Variational methods , Springer, Berlin, 1990.
[16] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. · Zbl 0353.46018 · doi:10.1007/BF02418013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.