×

Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. (English) Zbl 1205.35189

Summary: We prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.

MSC:

35Q30 Navier-Stokes equations
35D30 Weak solutions to PDEs
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B45 A priori estimates in context of PDEs
35Q20 Boltzmann equations
42B25 Maximal functions, Littlewood-Paley theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Bony, J.-M.: Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209-246. · Zbl 0495.35024
[2] Bresch, D. and Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003), no. 1-2, 211-223. · Zbl 1037.76012
[3] Bresch, D., Desjardins, B. and Chi-Kun, L.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations 28 (2003), no. 3-4, 843-868. · Zbl 1106.76436
[4] Bresch, D., Desjardins, B. and Métivier, G.: Recent mathematical results and open problems about shallow water equations. In Analysis and simulation of fluid dynamics , 15-31. Adv. Math. Fluid Mech. Birkhäuser, Basel, 2007. · Zbl 1291.35001
[5] Cannone, M.: Ondelettes, paraproduits et Navier-Stokes . Nouveaux essais. Diderot Editeur, Paris, 1995. · Zbl 1049.35517
[6] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III , 161-244. North-Holland, Amsterdam, 2004. · Zbl 1222.35139
[7] Chemin, J.-Y.: Perfect incompressible fluids . Oxford Lecture Series in Mathematics and its Applications 14 . The Clarendon Press. Oxford University Press, New York, 1998.
[8] Chemin, J.-Y.: Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel. J. Anal. Math. 77 (1999), 27-50. · Zbl 0938.35125
[9] Chemin, J.-Y. and Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1995), no. 2, 314-328. · Zbl 0878.35089
[10] Chen, Q., Miao, C. and Zhang, Z.: On the well-posedness for the viscous shallow water equations. SIAM J. Math. Anal. 40 (2008), no. 2, 443-474. · Zbl 1169.35048
[11] Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141 (2000), no. 3, 579-614. · Zbl 0958.35100
[12] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations 26 (2001), no. 7-8, 1183-1233. · Zbl 1007.35071
[13] Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 6, 1311-1334. · Zbl 1050.76013
[14] Danchin, R.: On the uniqueness in critical spaces for compressible Navier-Stokes equations. Nonlinear Differential Equations Appl. 12 (2005), no. 1, 111-128. · Zbl 1125.76061
[15] Danchin, R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1373-1397. · Zbl 1120.76052
[16] Fujita, H. and Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16 (1964), 269-315. · Zbl 0126.42301
[17] Haspot, B.: Cauchy problem for viscous shallow water equations with a term of capillarity. To appear in Math. Models Methods Appl. Sci. (2010). Doi 10.1142/S0218202510004532. · Zbl 1425.76208
[18] Kazhikhov, A.V. and Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41 (1977), no. 2, 273-282. · Zbl 0393.76043
[19] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2, Compressible models . Oxford Lecture Series in Mathematics and its Applications 10 . Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0908.76004
[20] Matsumura, A. and Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 9, 337-342. · Zbl 0447.76053
[21] Mellet, A. and Vasseur, A.: On the barotropic compressible Navier-Stokes equations. Comm. Partial Differential Equations 32 (2007), no. 1-3, 431-452. · Zbl 1149.35070
[22] Meyer, Y.: Wavelets, paraproducts and Navier-Stokes equations. In Current developments in Mathematics, 1996 (Cambridge, MA) , 105-212. Int. Press, Boston, MA, 1997. · Zbl 0926.35115
[23] Nash, J.: Le problème de Cauchy pour les équation différentielles d’un fluide général. Bull. Soc. Math. France 90 (1962), 487-497. · Zbl 0113.19405
[24] Triebel, H.: Theory of function spaces . Monographs in Mathematics 78 . Birkhäuser Verlag, Basel, 1983. · Zbl 0546.46027
[25] Wang, W.-K. and Xu, C.-J.: The Cauchy problem for viscous shallow water equations. Rev. Mat. Iberoamericana 21 (2005), no. 1, 1-24. · Zbl 1095.35037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.