Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations.(English)Zbl 1205.35262

Summary: If a partial differential equation is reduced to an ordinary differential equation in the form $$u'(\xi)= G(u,\theta_1,\dots,\theta_m)$$ under the traveling wave transformation, where $$\theta_1,\dots,\theta_m$$ are parameters, its solutions can be written in the integral form $$\xi-\xi_0=\int \frac{du}{G(u,\theta_1,\dots,\theta_m)}$$. Therefore, the key steps are to determine the parameter and to solve the corresponding integral. When $$G$$ is related to a polynomial, a mathematical tool named complete discrimination system for a polynomial is applied to this problem so that the parameter scopes can be determined easily. The complete discrimination system for a polynomial is a natural generalization of the discrimination $$\Delta=b^2-4ac$$ of the second degree polynomial $$ax^2+bx+c$$. For example, the complete discrimination system for the third degree polynomial $$F(w)=w^3+d_2w^2+ d_1w+d_0$$ is given by $$\Delta= -27(\frac{2d_1^3}{27}+ d_0- \frac{d_1d_2}{3})^2- 4(d_1- \frac{d_2^2}{3})^3$$ and $$D_1=d_1- \frac{d_2^2}{3}$$. In the paper, we give some new applications of the complete discrimination system for polynomials, that is, we give the classifications of traveling wave solutions to some nonlinear differential equations through solving the corresponding integrals. Finally, as a result, we give a partial answer to a problem on Fan’s expansion method.

MSC:

 35Q53 KdV equations (Korteweg-de Vries equations) 35A20 Analyticity in context of PDEs 35A24 Methods of ordinary differential equations applied to PDEs

Software:

RATH; MACSYMA; RAEEM
Full Text:

References:

 [1] Hereman, W., Comput. Phys. Commun., 65, 143 (1991) [2] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) [3] Fan, E. G., Comput. Phys. Commun., 153, 17 (2003) [4] Li, Z.; Liu, Y., Comput. Phys. Commun., 148, 256 (2002) [5] Liu, Y.; Li, Z., Comput. Phys. Commun., 155, 65 (2003) [6] Baldwin, D.; Göktas, Ü.; Hereman, W., Comput. Phys. Commun., 162, 203 (2004) [7] Li, Zhi-Bin; Liu, Yin-Ping, Comput. Phys. Commun., 163, 191 (2004) [8] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 290, 72 (2001) [9] Fan, E. G., Chaos Solitons Fractals, 16, 819 (2003) [10] Liu, Cheng-shi, Acta Phys. Sinica, 54, 2505 (2005), (in Chinese) [11] Liu, Cheng-shi, Acta Phys. Sinica, 54, 4506 (2005), (in Chinese) [12] Liu, Cheng-shi, Comm. Theoret. Phys., 44, 799 (2005) [13] Liu, Cheng-shi, Comm. Theoret. Phys., 46, 395 (2006) [14] Yang, L.; Hou, X. R.; Zeng, Z. B., Sci. China Ser. E, 39, 628 (1996) [15] Liu, Cheng-shi; Du, X. H., Acta Phys. Sinica, 54, 1709 (2005), (in Chinese) [16] Liu, Cheng-shi, Chin. Phys. Lett., 21, 1369 (2004) [17] Liu, Cheng-shi, Comm. Theoret. Phys., 43, 787 (2005) [18] Liu, Cheng-shi, Comm. Theoret. Phys., 46, 991 (2006) [19] Liu, Cheng-shi, Chin. Phys., 16, 1832 (2007) [20] Du, Xing-hua; Liu, Cheng-shi, Comm. Theoret. Phys., 46, 787 (2006) [21] Liu, Cheng-shi, Comm. Theoret. Phys., 45, 219 (2006) [22] Liu, Cheng-shi, Chin. Phys., 14, 1710 (2005) [23] Liu, Cheng-shi, Direct integral method, complete discrimination system for polynomial and applications to classifications of all single traveling wave solutions to nonlinear differential equations: A survey [24] Wang, D. S.; Li, H. B., J. Math. Anal. Appl., 343, 273-298 (2008) [25] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolutions and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001 [26] Dodd, R. K., Solitons and Nonlinear Wave Equations (1982), Academic Press: Academic Press London · Zbl 0496.35001 [27] Dodd, R. K.; Bullough, R. K., Proc. Roy. Soc. A, 351, 459 (1976) [28] Conte, R.; Musette, M., J. Phys. A, 150, 14 (1990) [29] Panigrahi, M.; Dash, P. C., Phys. Lett. A, 321, 330 (2004) [30] Fan, E. G., Phys. Lett. A, 305, 383 (2002) [31] Peng, Y. Z., Phys. Lett. A, 314, 402 (2003) [32] Sirendaoreji; Sun, J., Phys. Lett. A, 298, 133 (2002) [33] Chou, K. W., Wave Motion, 35, 71 (2002) [34] Fu, Z. T.; Yao, Z. H.; Liu, S. K.; Liu, S. D., Comm. Theoret. Phys., 44, 23 (2005) [35] Zhang, J., Int. J. Theor. Phys., 37, 1541 (1998) [36] Chen, H. T., Prog. Theor. Phys., 109, 509 (2003) [37] Ghosh, S.; Kundu, A.; Nandy, S., J. Math. Phys., 40, 1993 (1999) [38] Konopelchenko, B.; Dubrovsky, V., Phys. Lett. A, 102, 15 (1984) [39] Seyler, C. E., Phys. Fluids, 27, 4 (1984) [40] Lamb, G. L., Rev. Mod. Phys., 43, 99 (1971) [41] Zhou, Feng-wu; Liu, Zhong-zhu; Zhou, Huai-chun, Table of Integrals (1992), Yuhang Press: Yuhang Press Beijing [42] Gradsbteyn, L. S.; Ryzbik, L. M., Table of Integrals, Series and Products (2004), Elsevier Pte. Ltd.: Elsevier Pte. Ltd. Singapore [43] Bullough, R. K.; Caudrey, P. J.; Gibbs, H. M., (Kullough, B. R.; Caudrey, P. J., Solitons (1980), Springer: Springer Berlin), 107-143 [44] Yang, J. S.; Lou, S. Y., Z. Naturforsch. A, 54, 195 (1999) [45] Yang, J. S.; Lou, S. Y., Chin. Phys. Lett., 21, 608 (2004) [46] Lakshmanan, M.; Kalianppan, P., J. Math. Phys., 24, 795 (1983) [47] Li, B. A.; Wang, M. L., Chin. Phys., 14, 1698 (2005) [48] Fu, Z. T.; Liu, S. K.; Liu, S. D., Acta Phys. Sinica, 53, 43 (2002), (in Chinese) [49] Hirota, H., J. Math. Phys., 27, 1499 (1986) [50] Calogero, F.; Degasperis, A., J. Math. Phys., 22, 23 (1981) [51] Focas, A. S.; Fuchssteiner, B., Physica D, 4, 47 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.