zbMATH — the first resource for mathematics

Ordinal sums and idempotents of copulas. (English) Zbl 1205.62063
Summary: We prove that the ordinal sum of \(n\)-copulas is always an \(n\)-copula and show that every copula may be represented as an ordinal sum, once the set of its idempotents is known. In particular, it will be shown that every copula can be expressed as the ordinal sum of copulas having only trivial idempotents. As a by-product, we also characterize all associative copulas whose \(n\)-ary forms are \(n\)-copulas for all \(n\).

62H05 Characterization and structure theory for multivariate probability distributions; copulas
28E99 Miscellaneous topics in measure theory
26E99 Miscellaneous topics in real functions
28E10 Fuzzy measure theory
26E50 Fuzzy real analysis
Full Text: DOI
[1] Alsina C., Frank M.J., Schweizer B.: Associative Functions. Triangular Norms and Copulas. World Scientific, Singapore (2006) · Zbl 1100.39023
[2] Birkhoff, G.: Lattice theory, New York: American Mathematical Society, 1940; 3rd edn., Providence, R.I.: American Mathematical Society, AMS Colloquium Publications. vol. 25 (1967) · Zbl 0063.00402
[3] Clifford A.H.: Naturally totally ordered commutative semigropus. Am. J. Math. 76, 631–646 (1954) · Zbl 0055.01503 · doi:10.2307/2372706
[4] Climescu A.C.: Sur l’équation fonctionnelle de l’associativité. Bul. Politehn. Gh. Asachi. Iaşi 1, 211–224 (1946) · Zbl 0061.02307
[5] De Baets B., De Meyer H.: Orthogonal grid construction of copulas. IEEE Trans. Fuzzy Syst. 15, 1053–1062 (2007) · Zbl 05516334 · doi:10.1109/TFUZZ.2006.890681
[6] Genest C., Quesada Molina J.J., Rodríguez Lallena J.A., Sempi C.: A characterization of quasi-copulas. J. Multivar. Anal. 69, 193–205 (1999) · Zbl 0935.62059 · doi:10.1006/jmva.1998.1809
[7] Kimberling C.H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10, 152–164 (1974) · Zbl 0309.60012 · doi:10.1007/BF01832852
[8] Klement E.P., Mesiar R., Pap E.: Triangular Norms. Kluwer, Dordrecht (2000) · Zbl 0972.03002
[9] McNeil, A., Nešlehová, J.: Multivariate Archimedean copulas, D-monotone functions and 1-norm symmetric distributions. Ann. Stat. 37, 3059–3097 (2009) · Zbl 1173.62044
[10] Mesiar, R., Szolgay, J.: W-ordinal sums of copulas and quasi-copulas. In: Proceedings of the MAGIA 2004 Conference, Kočovce, Slovak Republic. October 2004, pp. 78–83
[11] Nelsen R.B.: An Introduction to Copulas. Springer, New York (2006) · Zbl 1152.62030
[12] Radojević, D.G.: Logical aggregation based on interpolative realization of Boolean algebra. In: Štěpnička, M., Novák, V., Bodenhofer, U. (eds.) New Dimensions in Fuzzy Logic and related Technologies–Proceedings of the 5th EUSFLAT Conference. vol. I, University of Ostrava, pp. 119–126 (2007)
[13] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North–Holland, New York (1983). Reprinted, Dover, Mineola NY (2005) · Zbl 0546.60010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.