×

Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution. (English) Zbl 1205.65260

Summary: Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications, the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 2D and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

KELLEY
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Delzanno, G.L.; Chacón, L.; Finn, J.M.; Chung, Y.; Lapenta, G., An optimal robust equidistribution method for two-dimensional grid adaptation based on monge – kantorovich optimization, J. comput. phys., 227, 9841-9864, (2008) · Zbl 1155.65394
[2] J.M. Finn, G.L. Delzanno, L. Chacón, Grid generation and adaptation by Monge-Kantorovich optimization in two and three dimensions, in: R. Garimella (Ed.), Proceedings of the 17th International Meshing Roundtable, Pittsburgh, PA, USA, 2008, p. 551.
[3] Huang, W.; Ren, Y.; Russell, R.D., Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle, SIAM J. numer. anal., 31, 3, 709-730, (1994) · Zbl 0806.65092
[4] Huang, W.; Ren, Y.; Russell, R.D., Moving mesh methods based on moving mesh partial differential equations, J. comput. phys., 113, 2, 279-290, (1994) · Zbl 0807.65101
[5] Lapenta, G.; Chacón, L., Cost-effectiveness of fully implicit moving mesh adaptation: a practical investigation in 1D, J. comput. phys., 219, 1, 86-103, (2006) · Zbl 1105.65092
[6] Li, S.; Petzold, L., Moving mesh methods with upwinding schemes for time dependent pdes, J. comput. phys., 131, 368-377, (1997) · Zbl 0870.65076
[7] Gehmeyr, M.; Mihalas, D., Adaptive grid radiation hydrodynamics with TITAN, Phys. D, 77, 320-341, (1994)
[8] Dorfi, E.A.; Drury, L.O., Simple adaptive grids for 1-D initial value problems, J. comput. phys., 69, 175-195, (1987) · Zbl 0607.76041
[9] Li, S.; Petzold, L.; Ren, Y., Stability of moving mesh systems of partial differential equations, SIAM J. sci. comput., 20, 2, 719-738, (1998) · Zbl 0924.65081
[10] Winkler, K.-H.A.; Norman, M.L.; Newman, M.J., Adaptive mesh techniques for fronts in star formation, Phys. D, 12, 408-425, (1984) · Zbl 0575.76075
[11] Thompson, J.F., Survey of dynamically-adaptive grids in the numerical solution of partial differential equations, Appl. numer. math., 1, 1, 3-27, (1985) · Zbl 0551.65081
[12] Eiseman, P.R., Adaptive grid generation, Comput. meth. appl. mech., 64, 1-3, 321-376, (1987) · Zbl 0636.65126
[13] Thompson, J.F.; Warsi, Z.A.; Mastin, C.W., Numerical grid generation: foundations and applications, (1985), North-Holland New York · Zbl 0598.65086
[14] Liseikin, V.D., Grid generation methods, (1999), Springer Berlin, New York · Zbl 0949.65098
[15] Noh, W., A time dependent two space dimensional coupled eulerian Lagrangian code, Meth. comput. phys., 3, 117-179, (1964)
[16] Hirt, C.; Amsden, A.; Cook, H., An arbitrary lagrangian – eulerian method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[17] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodríguez-Ferrán, A., Arbitrary Lagrangian Eulerian methods, Encyclopedia of computational mechanics, Fundamentals, vol. 1, (2004), John Wiley & Sons, Ltd.
[18] Winslow, A., Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh, J. comput. phys., 1, 149, (1967)
[19] A. Winslow, Adaptive mesh zoning by the equipotential method, Report UCID-19062, Lawrence Livermore National Laboratory, 1981.
[20] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in 2 dimensions, J. comput. phys., 46, 3, 342-368, (1982) · Zbl 0489.76007
[21] Dvinsky, A.S., Adaptive grid generation from harmonic maps, J. comput. phys., 95, 450-476, (1991) · Zbl 0733.65074
[22] Hamilton, R., Harmonic maps of manifolds with boundary, ()
[23] Schoen, R.; Yau, S.T., On univalent harmonic maps between surfaces, Invent. math., 44, 265-278, (1978) · Zbl 0388.58005
[24] R. I. Kreis, H. A. Hassan, F. C. Thames, Application of a variational method for generating adaptive grids, in: AIAA 23rd Aerospace Sciences Meeting, Reno, NV, 1985, pp. 85-0487. · Zbl 0592.76082
[25] Chacón, L.; Lapenta, G., A fully implicit, nonlinear adaptive grid strategy, J. comput. phys., 212, 2, 703, (2006) · Zbl 1083.65110
[26] Thompson, J.F.; Thames, F.C.; Mastin, C.W., Automatic numerical generation of body fitted curvilinear coordinate system for field containing any number of arbitrary two dimensional bodies (appl. to airfoils), J. comput. phys., 15, 3, 299-319, (1974) · Zbl 0283.76011
[27] Knupp, P.M., Jacobian-weighted elliptic grid generation, SIAM J. sci. comput., 17, 6, 1475-1490, (1996) · Zbl 0860.65114
[28] Anderson, D.A., Equidistribution schemes, Poisson generators, and adaptive grids, Appl. math. comput., 24, 3, 211-227, (1987) · Zbl 0636.65125
[29] Kania, L., Elliptic adaptive grid generation and area equidistribution, Int. J. numer. meth. in fluids, 30, 5, 481-491, (1999) · Zbl 0946.76080
[30] Baines, M.J., Least squares and approximate equidistribution in multidimensions, Numer. meth. part. differ. equ., 15, 5, 605-615, (1999) · Zbl 0941.65085
[31] Lapenta, G., Variational grid adaptation based on the minimization of local truncation error: time independent problems, J. comput. phys., 193, 159, (2004) · Zbl 1036.65104
[32] Huang, W.; Sloan, D.M., A simple adaptive grid method in two dimensions, SIAM J. sci. comput., 15, 4, 776-797, (1994) · Zbl 0809.65096
[33] Castillo, J.; Pedersen, E.M., Solution adaptive direct variational grids for fluid flow calculations, J. comput. appl. math., 67, 2, 343-370, (1996) · Zbl 0856.76039
[34] Chen, T.F.; Yang, H.D., Numerical construction of optimal adaptive grids in two spatial dimensions, Comput. math. appl., 39, 12, 101-120, (2000) · Zbl 0964.65124
[35] Yang, J.-C.; Soni, B.K., Structured adaptive grid generation, Appl. math. comput., 65, 1-3, 265-278, (1994) · Zbl 0811.65077
[36] D. A. Anderson, Adaptive grid scheme controlling cell area/volume, in: AIAA 25rd Aerospace Sciences Meeting, Reno, NV, 1987, pp. 87-0202.
[37] Liao, G.; Anderson, D., A new approach to grid generation, Appl. anal., 44, 285-297, (1992) · Zbl 0794.65085
[38] Moser, J., On volume elements on a manifold, Trans. amer. math. soc., 120, 2, 286-294, (1965) · Zbl 0141.19407
[39] Dacorogna, B.; Moser, J., On a partial – differential equation involving the Jacobian determinant, Annales de l’institut Henri Poincaré. analyse non linéaire, 7, 1, 1-26, (1990) · Zbl 0707.35041
[40] G.L. Delzanno, J.M. Finn, The fluid dynamic approach to equidistribution methods for grid adaptation, Comput. Phys. Commun., submitted for publication. · Zbl 1217.65184
[41] Budd, C.J.; Williams, J.F., Parabolic monge – ampère methods for blow-up problems in several spatial dimensions, J. phys. A, 39, 5425, (2006) · Zbl 1096.35070
[42] Degani, I., Monge – ampère grids and the multidimensional mapped Fourier method, J. chem. phys., 128, 164108, (2008)
[43] Budd, C.; Williams, J.F., Parabolic monge – ampère methods for mesh generation in several dimensions, SIAM J. sci. comput., 31, 3438-3465, (2009) · Zbl 1200.65099
[44] G. Monge, Mémoire sur la théorie des déblais at des remblais, Histoire de l’Académie Royale des Sciences de Paris, 1781, pp. 666-704.
[45] Kantorovich, L.V., On the translocation of masses, C.R. (doklady) acad. sci. URSS (N.S.), 37, 199-201, (1942) · Zbl 0061.09705
[46] G.L. Delzanno, J.M. Finn, Generalized Monge-Kantorovich optimization for grid generation and adaptation in Lp, SIAM J. Sci. Comput., accepted for publication. · Zbl 1220.49020
[47] Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear 2nd-order elliptic equations I. monge – ampère equation, Commun. pure appl. math., 37, 3, 369-402, (1984) · Zbl 0598.35047
[48] Zheligovsky, V.; Podvigina, O.; Frisch, U., The monge – ampère equation: various forms and numerical solution, J. comput. phys., 229, 13, 5043-5061, (2010) · Zbl 1194.65141
[49] X. Yuan, S. Jardin, D. Keyes, Moving grids for magnetic reconnection via Newton-Krylov methods, Comput. Phys. Commun., in press, doi:10.1016/j.cpc.2010.06.009. · Zbl 1219.78036
[50] Kelley, C.T., Iterative methods for linear and nonlinear equations, (1995), SIAM Philadelphia · Zbl 0832.65046
[51] Dembo, R.; Eisenstat, S.; Steihaug, R., Inexact Newton methods, J. numer. anal., 19, 400, (1982) · Zbl 0478.65030
[52] Chacón, L.; Knoll, D.A., A 2D high-β Hall MHD implicit nonlinear solver, J. comput. phys., 188, 2, 573-592, (2003) · Zbl 1127.76375
[53] Chacón, L., A non-staggered, conservative, ∇·B=0, finite-volume scheme for 3D implicit extended magnetohydrodynamics in curvilinear geometries, Comput. phys. commun., 163, 143-171, (2004) · Zbl 1196.76040
[54] Chacón, L.; Knoll, D.A.; Finn, J.M., Implicit, nonlinear reduced resistive MHD nonlinear solver, J. comput. phys., 178, 1, 15-36, (2002) · Zbl 1139.76328
[55] Knoll, D.A.; Rider, W.J., A multigrid preconditioned newton – krylov method, SIAM J. sci. comput., 21, 2, 691-710, (1999) · Zbl 0952.65102
[56] Rider, W.J.; Knoll, D.A.; Olson, G.L., A multigrid newton – krylov method for multimaterial equilibrium radiation diffusion, J. comput. phys., 152, 1, 164-191, (1999) · Zbl 0944.85002
[57] Knoll, D.A.; Mousseau, V., On newton – krylov multigrid methods for the incompressible navier – stokes equations, J. comput. phys., 163, 262-267, (2000) · Zbl 0994.76055
[58] Pernice, M.; Tocci, M.D., A multigrid-preconditioned newton – krylov method for the incompressible navier – stokes equations, SIAM J. sci. comput., 23, 2, 398-418, (2001) · Zbl 0995.76061
[59] Briggs, W.L., A multigrid tutorial, (1987), SIAM Philadelphia, PA · Zbl 0659.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.